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FOREWORD

Two approaches for the modeling of turbulence exist. One is to start
from an open hierarchy of profiles and higher order correlations. The other
is to formulate a closed sequence of transport processes: evolution of mean
profiles, eddy transport coefficients (viscosity, diffusivity, and damping
or amplification rate), and relaxation or memory loss for the approach of the
transport coefficients to equilibrium. The former approach uses an ambiguous
closure, or an arbitrary hypothesis of the length scale of mixing. The
latter approach is based on a theory of transport and the analysis of the
spectral structure of turbulence.

The author follows the latter approach and develops a new kinetic method.
This intact report includes research reported quarterly during the first year
of effort, September 1981 through August 1982, with a second report to follow,
which will include research for September 1982 through August 1983.
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CHAPTER A: QUARTER ONE

Kinetic Basis of Cascade Transfer in Turbulence
C. M. Tchen
The Graduate Center and The City College of the City

University of New York, N.Y. 10031
ABSTRACT

Among the transport functions whicb characterize the evolution
of a turbulent spectrum, the cascade transfer is the only func-
tion which describes the mode-coubling as the result of the
nonlinear hydrodynamic state of turbulence. A kinetic theory
combined with a scaling procedure is developed, to derive a
kinetic equation of velocity distribution and the transition
equations of path perturbations. These equations permit to
formulate a transport theory of turbulence to investigate the
eddy diffusivity, the eddy viscosity and the cascade transfer.

Circumstances under which the transfer may appear in the form



of a direct cascade or a reverse cascade are considered.

I. I??RODUCTION
The Navier-Stokes equation of motion, with a pressure

gradient and a buoyancy as driving fields, can be used to de-
scribe the micro-dynamical state of turbulance and to serve as
the basis of a statistical theory. But the nonlinearities in
the inertia and the driving fields will confront us from the
start of the analysis. Various statistical methods have been
proposed in the literature but were not too successful in sol-
ing the closure of the hierarchy of equations. By changing the
velocity function into a "particle" velocity as an independent

random variable, the kinetic method is relieved of this diffi-



culty. What rémains is a nonlinear interaction betweén fluid
and "particle", with a diffusivity as an integral operator to
represent the memory in the non-Markoff process.

The kinetic theory of turbulence presents the following
three problems: (a) the kinetic equation of turbulence, (b)
the transport theory of turbulence for the determination of
the eddy diffusivity, (c) the kinetic basis of the cascade
transfer. In the derivation of a kinetic equation, it is im-

portant not to fall into the Bogoliubov hierarchy.l’7

Its
closure has not been as successful in fluids as in plasmas.
This diffuculty may have prevented further progress in the
kinetic theory of fluid turbulence. We introduce a "scaling

procedure" to avoid this hierarchy and the involvement of a

system of equations of singlet and pair distribution functions.
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The eddy diffusivity which characterizes the kinetic equation
is defined as the time integration of the Lagrangian corre-
lation of field fluctuations. We develop a transport theory
for the transformation of a Lagrangian correlation into an
Eplerian correlation. This relationship, or the time-space
transformation, has attracted many investigators by using the
hypotheses of independance-and normality.ga The correction
has also been evaluated. 10s/11 rhe problem referred to a dif-
fusion model, i.e. to a micro-dynamical state without a driving
field. This model would exclude the more realistic aspects of
turbulence, as presented by the Navier-Stokes turbulence, the
shear turbulence and the turbulent motions in a statified me-

dium. We feel it important to find a generalization that in-

corporates the driving field. This generalization brings up



new difficulties. Our kinetic theory of turbulent transport
helps in switching the driving field to a new role of advection
in the phase space and in prescribing probabilities of tran-
sition to replace the above hypotheses of independence and
normality.

In order to be qualified as a transport property, the
diffusivity has to reach-a statistical equalibrium within a
finite time, called the relaxation time. This finite time is
obtained, when a memory-loss can be found. The scaling pro-
cedure selects and organizes the necessary mechanism of mem-
ory-loss by the turbulent dissipations.

The mode-coupling governs the trahsfer of modes across
the spectrum in both directiéns toward the high as well as

the low wavenumbers. It appears in the form of the moment of

A-5



the fluid-particle interaction, in analogy with the nonlinear
Landau damping in plasma turﬁulence. Formally, the fluid-par-
ticle interaction can be expressed by a series of high order
moments, as we know that a velocity distribution could be ex-
panded in this way. It is nevertheless an insufficient way of rep-
resentation. This indicates that, with these limitations, a

pure continuum method on its own may not be successful in ana-
lyzing the mode-coupling, since it had failed in describing the

Landau damping.

II. MICRO-DYNAMICAL STATE OF TURBULENCE IN THE CONFIGURATION
AND PHASE SPACES
The hydrodynamical equations of the motion of an incom-

pressible fluid are the equation of momentum

A-6



s ] A A
= = 1
O+ L) = €. y=2t, 2
and the equation of continuity

rd

v-@ =0 (1b)

where the evolution of the total fluid veloqity a(tx,) under

the force Ef@g)is governed by a differential operator

Vv ~.)>Vz) (2)

-

]
<>

Z(f,:/

and VY is the kinematic viscosity of the fluid. The force

. .
E.—__)-;-V/J (3)

lal
may be due to the gradient of pressure P in a fluid of density
f’ or may take a more complicate form involving the tempera-

ture difference and the buoyancy force as in a strati-

fied medium. In all cases, the force can be written in the dif-

ferential form

T E(Ex) = vV afer) alEx)= Alox) (1)



or in the integral form
"E'/l‘,x/ = ?(tx/x '))’/'i(t, x')} . (4b)

where

?(/f/f’}{} S—Yzli./d"’ ! {) (5a)

i

is Poisson's integral operator, such that

FEx/x){Alexly=-7 & Affxu_ﬂ/ i(tx) (5b)

- -

Both forms result from applying the condition of incompress-
ibility (1b) upon (la). Here and in the following the inte-
gration is understood to extend from - © to ®

The hydrodynamical equations (la) and (1b)

can be considered as describing the micro-dynamical state
of turbulence in the configuration space t,f. This can be
transformed into the phase space t,},g, by introducing a

S - function



(6)

Nt xv) = I[v-iftx)]

which satisfies the equation of evolution

Qo+ L)N(x,v) = o, (7)

with a differential operator

(8)

in the phase space. The force can again be written in the inte-

gral form:
Eftx) - 7(tx/xN'){n(x:v') N(t,x:vﬂ} (9)
with Poisson's integral operator

j,(f x/x,v)= -v 4—_’;;/\/4{4\_/' ! (10a)

and the source function

Q(X V/ VV V\/

(" V) (10b)

in the phase space. 12



The micro-dynamical state in the phase séace (7) possesses
certain important advantages over that in the configuration
space (la) in eliminating the nonlinearities. This is done

by changing the role of the velocity as a random function

into the role as an independent random variable. By the same
token, the inhomogeneous equation of micro-evolution in the
configuration space is transformed into a homogeneous equation
in the phase space. We shall fully utilize these advantages
in developing our statistical theory of turbulence. Of coﬁrsa,
the micro-dynamics should still keep a nonlinear form in the
phase space, as seen from ? \?IV in (7). Fortunately the

N
treatment of this nonlinearity can be delayed by considering E

Aa

to be provisionally known. After we have closed the transport

equations; we can pick up the nonlinear relationship (4a) which

then will be in its uncomplicate form of a consititutive relation.

A-10



The equivalence between the two spaces (1) and (7), can be
easily verified by taking the momenﬁs

fai\_/_N=l, fdng=:u(t,f) : (11)
of.(7). It is then seen that the equation (7) in the pﬂase
space actually corresponds to the simﬁltaneous system of dy-

namical equations (la) and (1lb) in the configuration space.

III. THE BBGK HIERARCHY OF TURBULENCE

If v 1is a stochastic variable by the stochastic behavior
A
of Lk@;x) , the function (6) can be called a distribution

function, denoted by

A

N(tf":) = f{t,x,‘\/) , (12)

retaining nevertheless its stochastic character, with a

A-11



micro - dynamical state (7). The function (12) and
the evolution (7) contain fluctuations with all the minute
details which are unnecessary in a statistical study. A
coarse~-graining procedure which eliminates all stochastic
fluctuations is the ensemble average
A=) a3
called "global average". A fluctuating function subject to
this average becomes deterministic, e.g.
A Nt x v) = ?(f xv) . (14)

and the deviation from the average is the fluctuation

~

'f‘f’{-' (15a)
or, in terms of the operator notations,

I-A = A (15b)

”

where "1" is the "unit operator", A is the average operator,

A-12



-

and A is the fluctuation operator.

Upon applying the average operator A to the equation

(7) of micro - dynamics, we get

(Q+Dfxv)=-TECx)- 3 env)
- 7/tx/x V/;k(x v/(f(t‘x,x//f(tx V//} (16a)

-~ w- o~

or

O +L) Pltx,v) =29t #/x; g/{ o) 4t XV %, V) } , (16b)

when use is made of (9) and of the notation

flt XVixv) = <{(t>‘/‘/’ f/ti‘/t/)> (17)

The functions (14) and (17) are called the singlet and the
doublet distributions, respectively.

In (16b) we see that the evolution of the singlet dis-
tribution depends on the doublet distribution, and that the

latter evolution will.expectedly depends on the triplet

A-13



distribution

fesvsivs sy sfoxeese) Fexe)) . 00
and the sequence continues to form the BBGK:hierarchy. This
hierarchy is well known in the kinetic theory of plasma tur;
bulence, and is seen here to reappear in fluid turbulence

with the difference that Jzégv) is defined by (10b) in an

badi Y

incompressible fluid, while ,h(npj=/ in plasmas. 1-4,8

The closure of the hierarchy constitutes a difficult
problem. It has been attempted by finding a small parameter
in plasmas, but such a parameter is lacking in fluids. This
may explain why so little progress has been made in fluid
turbulence by the kinetic approach. The analysis of the spec-
tral structure of turbulence requires the Fourier transform-

ation of a correlation function, and therefore the second

A-14



moment of the doublet distribﬁtion. Thus this kinetic problem

calls for the determination of both distribution functions. This
obviously would pose a tremendous task. We shall devise

a kinetic method, in which we can avoid the BBGK hierarchy'and

the doublet distribution function. To this end, we shall resort

to the scaling procedure of fluctuations, which we shall de-

scribe in the following.

IV. THE SCALING OF FLUCTUATIONS

- The BBGK hierarchy which begins with the singlet distri-

bution (16) does not give any statistical information unless

the doublet distribution is known. This means that

a minimum of two equations of the closed hierarchy will be

A-15



needed to describe the fluctuations statistically. In order
to avoid the BBGK hierarchy completely, we shall scale the

fluctuation

s MY
n

(o)
E7+ E (19)

into a macro-group €Fﬂ and a micro-group E, .

The scaling is performed by writing the fluctuation-op~
erator

A=A A" (20a)

into two components AGO ' A, r which select the macro-
group and the micro-group, respectively, and are called
"scaling operators". Since (15b) is known as the "Reynolds
decomposition" in turbulence, we may consider the scaling
(20a) as.a simple ex£ension of this decompoéition.

A-16



For the sake of convenience, we introduce

A=A+ A(°) ) (20b)

a
so that
A= I-A, - | (20c)
The two groups ?‘q and 15, have their durations of
correlation Té(o) and ’(;' , With the inequalities
A T’ | (21)
stating that the micro-group .§J is more random than the

macro-group . Their respective portions of the energy

E&ﬁ
<’(qu R p , ‘2 e ., (‘J
HKEYD = [Tar Stk), $HE)= | dk Sk (22a)
o k
are clearly separated by the wavenumber variable { in the
spectral distribution S(k) of f' - fluctuations, although

the individual groups E(o) and E° may overlap in their

Fourier compositions. Clearly, the two portions add to

A-17



_ k=co |
$CED = [ Sk) .

o

Similarly, we scale the velocity fluctuation
w :L(,(o),c. u’
. ) . ’
into a macro-velocity u and a micro-velocity W« of
energies
(0)2 ; | 2 *
i °. _ , ’ ’ _ ,
$6 < [ Fe), 6= [ arSE)
o k
in the spectral distribution FZk/of U - fluctuations.
The two portions also add to
f=c
Z 4
e - [T Fle)
0

The same scaling applies to the distribution function

v
f(tx,v} in the superposition

Forvd

[~
of a macro-distribution '¥<) and a micro-distribution f’

It is to be remarked that the scaling permits the

A-18
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(23)

(24a)

(24b)

(25)



g

e

derivation of the spectral distributions by simply
differenting (22a) and (24a) with respect to ‘é , while this

was not the case with the non-scaled energies (22b) and (24b).
Thus our statistical problem amounts to £finding a  kin-
etic equation of the scaled singlet distribution only, instead
of both the singlet and the doublet distributions in the un-
scaled treatment of the BBGK hierarchy.

It is to be stipulated that the decomposition into the
scaled groups (20) differs from the decomposition into the
Fourier components or a group of such components. The latter
decomposition is a mathematical transformation without adding
any physical concept to the treatment, while the former de-
composition injects a scaling procedure of coarse-graining to

the stochastic process by the operator 14@) or the operator

A-19



A’=/¥—/4“) . Consequently, the scaling procedure dis-
tinguishes between a macro-process representative of the evol-
ution of a macro-field and a micro-process representative of
the transport properties as shaped by the more random micro-
fluctuations in the medium in which the macro-£field is propa-
gating. Well defined probabilities of transition, that are
self-consistent with the once given micro-dynamical state of

, . . (o) ’
turbulence, will define the scaling operators A °~ and A .

V. KINETIC EQUATION OF TURBULENCE

The micro-dynamical state of turbulence is described by
the dynamical state (7) in the phase space. We apply the scaling

operators /“b)and A" and decompose (7) into the system

A-20



Ao LB 0) - - A2 €7

(bt'f'A,{‘_\)'f’(t,:(,_vz = _ E". };(?.}. f("}/’ (26Db)

which describes the evolution of the macro-distribution
under the statistical effects of the more random micro-fluc-
tuations E’f’ , while the f' fluctuations are ex-
cited by the gradients of the mean and the macro-distributions,
according to (26 ). All operators including the scaling oper-
ators A(oj, A’ and the differential operator L refer to all

functions which follow them.

If we disregard the group-coupling between f(o) and ‘f’
and merely express E in terms of f’ according to (9) by

A’ , we would again fall into the BBGK hierarchy in the form:
K DRl =A%ttt I 50

= -2 g,(t;x/x;w){n(:; v) f(oj(tf,’g’; X, _V)} .

with

f(O)(t,X:V’j X, ) = A(O‘f,(t:(,’!/}f,(tf’!)

- -

A-21



by definition of the sca;ed doublet distribution function.

In order to avoid this hierarchy which is equally undesir-
able, we call on the group-coupling between the two equations
(26a) and (26b). For this purpose, we rewrite (26b) in the form

Quel)f =737+ %) - ALE 22
by the use of (20c). We integrate to find
UGTANEICEY?
t -
-~ [1e U trjelee) e fhew] - e
0 - -

The left hand side of (27) represents the total time derivative

4

thBt'+L (29)

/
along the trajectory of the evolution of —f(tx,vf in the
phase space, and the right hand side is a driving field. The

solution (28) is the time integration of the driving field in
A-22



the Lagrangian representation denoted by

U(t;t—‘&)g’[f-'t)'? [ ‘z{_:" 5’[1:_7:' i(t-T)J ' E [ .'Zﬁ—‘c, x (t-t) V(t-t) - (30)

Here x(t-T) is the position along the trajectory at the

time t-T , when it is known that at time t, the position is

x and the velocity is v . The trajectory is governed by:
df(tl) dY(tl)
= V(tl) ’ - = E(tl) 3 (31la)
dtl had dtl -~

where V(tl) is an intermediate variable in

dzx(tl) (31b)
= E (tl)

dt]_2
The dynamical equations (31) coverninc the trajectory are called

the micro-dynamical equations of transition. The operator
is.called the propagator, or "Lagrangian operator". The last
term of (27) does.not contribute to the solution, by A'/h:Ci .
The stress jip the phase space—is thus found to be

A%y = - DA (F+ 76’("))} .

(32)
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where
D . (c) t 4 -
= A dt‘é?(@x}(]ﬁtfép)E(?%t) (33)
A - 7’ -
is the eddy diffusivity. Hence, upon substituting the stress

into the equation (26a) of macro-evolution, we obtain:
( A A 4 Y (O)
A D)floxe) = 2 DY 2041

In the evolution of the macro-distribution (34) of scale t , we have

t>t'
C
(35)

and a fortiori

t » T, (36)

from @1), so that I)’ from (33) becomes a large-time diffusivity

-~

, a» ffCD ’ ’
D= A / dv Eltx) Ultt)Elb) (37)

o

- 0

that asymptotically will take a deterministic form:
, 0o
D' [l Ukt Et)> (38)
2 (o] - = -

A-24



on account of the small correlation time (36) and the deter-
ministic character (22a). Under this circumstance, we reduce
(34) to the following kinetic equation

(b +A%L ) & © ) . 2D -)f(oj(t—rj

¢ | f = - 24 + 0L ¢ . (39)

It has the form of a Fokker-Planck equation, containing a
memory as described by the diffusivity operator Ij¥'} . By
the group-coupling and the scaling procedure, the kinetic

o
equation (39) is explicit in f() , avoiding the BBGK hierarchy.

KINETIC THEORY OF TRANSITION

The transport theory for the determination of the diffusi-

vity (38) requires the examination of the Lagrangian correlation

CEltx) Uttr)E (b2 =(Elix)E t x60)]
= JaxE Cx)ELtzaIS x50 - (o)
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The trajectory in the phase space
A
xtt)= x-ve + Alz) (41)
A
contains a fluctuating path .Q(ﬁj in the retrograde tran-
sition, i.e. in a time interval ~T , and is self-consistent
with the same micro-dynamical state (31) as that of the kinetic
equation of velocity distribution (39).
A

The fluctuating path -f(LF} is a random function, for
which we will develop a kinetic theory of transition.

The first of the micro-dynamical equation of transition

(31) can be written in the form

2 Ny 2 7% - '
[5- Yo G #=t) =0 2

called the "master equation of transition", where the velocity

\aﬁt) has been defined by (31), and

Peed) = 3[1-2c)]

A-26



is a probability of transition in the microscopic description.
It is a function of the random variable ‘[ , and has the

-

moments:
Pl A 2
[H =1 [ifdP=Ll) (44)
It is not diffjcylt to verify, by means of the moments (44),
that the master equation (42) will indeed reproduce the micro-
dynamical equations (31) .
We apply the scalings A, Ao y A’ to the master

equation (42) and derive the following kinetic equations of

transition

2P ) o 2P K{__}‘_;S}

= — t (45)
2T >4 xJxY)
'DE(-T:,‘Q) V(_t) BE
°T ° 24 'b,h,e (46)
and the probabilitv-of transition in the micro?scale '
, Pt @)
Pl=L) = - A=) (47)

2

-
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where W is a drift velocity. The details of derivation,v
which are similar to those uSed in the derivation of the kin-
eﬁic eauation.of velocity distribution, will not be repeated
here.

The coefficient of diffusion, as defined bv

K

o X

-l

— d<”_ ”_>
- 1 e (fen Je)
is calculated from the micro~dynamics (31) of the path fluc-
tuation, written in the new form :
- T ., ~ T
f) - [ 45 V=), Ve)=-[4e BEv) . s
- 0 - - 0 B
We find the dispersion
TN b 3 27 3 /2 2
e/ lt=)y =2 [de (74 w20 e T UEDEEED (s
and the diffusion coefficient
K ( Y RSN E S
2-:):‘5/ T("’t)<5/‘75ﬁ"7/)' (50b)
= 0 . -
By scalings, we have:
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EEt2 = e ) €40
5(«:)(_5) ~ i—T‘(I::W(z—) €(o}(_c/>
A d)y 2 227 D

-
-

(51a)

K, + D" . ~_ (51b)
The kinetic equation of transition, in the non-Markoff
process of scales (45) and (46), is ;hus derived from the
master equation (42) in self-consistency with the originally
stated micro-dynamics of turbulence, in the form (1), (31),
or (49), and therefore should not be confounded with the com-~
monly known transition equation which was derived phenomen-

13,14

ologically in the hypotheses of a Markoff process. Note

also that the kinetic equation of transition determines a

Pal
retrograde transition of vath f .
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VI. TRANSPORT THEORY OF DIFFUSIVITY

By the Fourier decompnosition, we tranéform the formula
(38) of diffusivity into
00 : 47
/ / Ve A ‘é‘Vf
D -/ﬁ/dé e ) T (52
with the use of (40) and (41). The details of the transform-
ation are elementarv and have been omitted. For the sake

of abbreviation, we have introduced the Fourier function

-

'y ’,é/f)] E. % ,(_k') c-é £ ,_47(.1:/ (53a)
and the fluctuating intensitv

Ely)elen) « [4b" ) e
of spectral tensor

Gtk)y = x ERIECED (530
When the Fourier transform is truncated within a length inter-

: 4
val Z)( » the truncation factor is )(;(7'//\// ,where d, is
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the number of dimensions.

It is to be noted that the integral

4
, i " kv .
[ e i)y < = YE | (s42)
with a perturbed path /f(’Q/, constitutes a Lagrangian corre-

lation of the E - field fluctuations, while the integral

/"‘/5’<°*'[/ef@(-r/]~ et
-7 k-0

without path perturbations is the Eulerian correlation. Hence

(54b)

the distinction and the relation between the two correlations

reside in the path perturbations in the Fourier function

i

<o=— D

(55a)

</‘."(f') e_'d/:c"g(—T}) -

This function can be decomposed into two parts as

(‘:'> <f ( ) (/4., +A)e” déf,!ﬁt/)

W

‘ P . (55 i
CFORECDY °
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since Ao +A° , with

m

(o>

“
-

i Gy <A

]

e atr 0 KT

For the analysis of the first part (56a), we calculate
/ 7 /7
X r/ ckA
4 AT
A'e

Lk//e/t) d»[ Lé,e P( f)=_ Lé /(’/Z'/[LH(/{;’

A‘{’—L‘/‘é-!o(-t/ /aw -Lk,@P/ 1) - ,££ )

(57)

from the Fourier transformation of the kinetic equations of

transition (45) - (47), so that we find

<q;,> = (A:(’_l‘:l/> /1 y

(58)
with the notations:
= A AR
£ = up{m /4: [K(t/]}
A= exp[-A%: d-z: K&
T = (59)

b
f e e -
(7
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The second part (56b) contains the fluctuations already

found in (57), and can thus be written in the form:

&S - -a/ff<4?f(k’}l'/-f/ 'Lu(t})
y k74

_-l:é,'<4?/_(k‘)/£'(-t)> HJ> : (60)

The degenerated function

(4;-(/%’) [(_7;)> = K (@Z‘E/é?‘t}>(4y’-(l’7) (61)
can be conéidered as a time-integrated flux, so that, by com-

bining (60) and (6l1), we obtain
(Z£>=‘¥'(4Yf’/>H , (62)
2= bk Q)4 (T) D=2 T

-

with

(63)

Olv

/, ’
in the transport of s' of a path {}hﬂand a diffusivity D s °

-

The results (58) and (62) for the two parts of the Fourier

function (55b) add to

(Tt Aty = (57 CatIp H -

(64)
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and yield a diffusivity which éan be written in the form:

_'12' =/otit' (/:(f/) qp(f/f} )
This expr;sses that the diffusivity is endowed by the spectral
tensor <é?%]> and approaches its equilibrium at a relaxation

time

G(k/v)= [ de et/f-\_/T[,_g'(—/e'/] k). (66)

0]

where hL and E’ have been defined by (59) and (63), re-

spectively.

Note that, since the relaxation time (66) contains ]>’

-
-

in the integrand, through E’ and h& from (63), (59) and
(51b), the form (65) is the integral equation for the deter-
mination of I) .

=

We conclude that the Lagrangian correlation of the

E - field fluctuations is expressed in terms of the spectral

LY
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function by the following formula:

<§"(t,i) U(t’t—rjgﬁ.rpz/dé,)’@@7_57'_’5»/‘4/“75:“)) (67a)
with

MEED - e EY s .

(67b)

from (64) -~ (66).

VII. KINETIC BASIS OF THE CASCADE TRANSFER

We write the kinetic equation of velocity distribution

(34) in the following explicit form:
) ) 7 2p(), J@n o plo), o), 7
btf + A \_{-g,{-yv,ﬂ +A_{;‘°-f7? +§.bbf

-2 2f2 "}

We take the moment of (68). The zeroth moment gives the

equation of continuity

v w2 o (69)

.,
-
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and the first moment gives the equation of momentum in the

form:
(-] — ] ) -— ( (o, (0) . (0 o (0
Y (Rl i A) - € o

with a collisionless interaction

9+ far 232 o)

() ~ —_
The advection ( O)L‘J) , the production /V(bt u,;)}

VZ“’(Q)

(o
the inertia AV( (°) J)) , the viscous damping Y .

and the driving field Ef_oj are all the regular terms recog-
nizable by isolating the macro-group from the hydrodynamical

equation (la) which describeg the micro-dynamical state of tur-
bulence. The interaction J;_CO) is new, and can be verified to

(
vanish if the memory should be absent. Since f o can be
i

identified as a scaled Reynolds stress from the micro-flux of

momentum, i.e.
(71b)

(o .,
I.) = -~ 5.(14\(0)14‘. L;) ,

[N
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the memory is indeed essential to turbulence.

From the mixing-length hypothesis, the momentum flux of

the gradient type, i.e.

¢, , p (o)
A L; =- K 24, (72)

has been established, giving an interaction in the form:

TV a g

¢ T X, vi/L X

The transport coefficien? #(’ is called the eddy viscosity.
The comparison between the above two forms of interaction
suggests a means of isolating this eddy viscosity, provided
the transport of the gradient type (72) is valid. On the con-
trary, when the gradient transport is not valid, as is the
case with certain stratified media, the kinetic interaction

(70) could determine the correct type of transport appropriate

to the problem.
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G
Upon multiplying the momentum equation (70) by uC}

and averaging, we obtain the energy equation:

)z ©) ) ° ©)_ 1%
D 2 P T O 1% o

describing the rate of change of the kinetic energy, as governed

by the following transport functions:

. ) (), @ -
production pP’= - <“'/:. W, Z_ LLD..
o, (o
coupling C(o}—__: <u,(/- E }) ' (75)

cascade ‘T‘"}E _<&‘°),J@/>

transfer

viscous © (¢))2
dissipation & )E ‘)<&_V bf ))
o ©, (o -
flux transport I(}:‘: - 'é- Z <u4) u_jz)
L

Among these transport functions, only the mode-coupling

function, or the cascade transfer function

%% (2 77
== Ay ¢ 2 DY) f ) O
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possesses a structure that is characteristically kinetic, as
involving the correlation

(“?)(t/ x) f(°}(l‘—t)> | (77)

between the fluid velocity uﬁv

and the singlet distribution

fp) . This coupling is analogous to the fluid-particle
interaction which was considered to be the origin of the non-
linear Landau damping in plasma turbulence.

In (67) we have derived a formula for the conversion of a
Lagrangian correlation into an Eulerian correlation (or its
Fourier transform). We apply the same rule for the Lagrangian
correlation (77),-and obtain:

4‘(:/& x) f (oj( f—‘C/> = / ok ’ X @:‘-’}/ A ") f (O)('_'é,lv/> M/?: k ”v/ ) - 78)
where ﬁ4 is defined by (67b).

Now when this Lagrangian correlation is substituted into
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(76) , we find the transfer function in the form:
TV [ty g 202 KL P ) o
Noting that zDY-} is an operator of integrations
with respect to é’ and T , as prescribed by (65) and (66),

respectively, we can rewrite (79) in the explicit form, as

follows:

T(o)= —//dé'd.é 'ﬁtfdg v.
0

, S/ (©)r wy PO )
X 3 [M('C, f' _\{) BA 7(<u,(/(g ) ’f j(k, l,)> M(-C/f/ :/)} ' (80)
VIII. CONCLUSIONS

By means of a scaling procedure, we have developed a kinetic
equation of turbulence and a transport theory
of eddy diffusivity. The transport theory is based

upon the transformation of a Lagrangian correlation into an
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Eulerian correlation by means of transition probabilities
which we have found from a kinetic theory of transition.

The transfer function describes the mode-coupling, or the
caséade transfer across the spectrum. It appears in thejform
of a fluid-particle interaction, and is therefore a kinetic
phenomenon like the Landau damping. A memory should exist
in this interaction and is generated by the Lagrangian corre-
lation between the fluid velocity and the "particle" velocity
distribution. However, a memory-loss should be present for a
collisionless dissipation to yield a finite relaxation time.
A preliminary examination of the expression of the cascade
transfer reveals that the cascade process can persist in the
direction of high wavenumbers, so that either a transport along

the gratient, or a collisionless dissipation in the explicit
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form of a Landau damping can appear. With this distinction,

an eddy viscosity or a rate coefficient of Landau damping can

be separately analyzed. In othé; circumstances, e.g. in the

atmospheric turbulence with a stable stratification, a reverse

cascade may appear, involving a transport counter to the gradi-
15

ent. The reversal is associated with the "gap" phenomenon.

An analytical expression of the cascade transfer of this kind

will clarify the gap phenomenon and the concept of "negative

viscosity".
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CHAPTER B: QUARTER TWO

Kinetic Theory of Turbulent Transfer with Double Memory-Loss
C.M. Tchen

The Graduate Center and The City College of
The City University of New York, N.Y. 10031

Abstract

The transfer function governs the mode-coupling in
strong turbulence. It is investigated here by means of a
kinetic equation of turbulence, in consistency with the
hydrodynamical system that describes the micro-dynamical
state of turbulence. The equation of spectral balance is
obtained by taking the moment of the scaled kinetic
equation for the one-point distribution without the need
of the two-point distribution. It is found that the trans-
fer function is governed by two Lagrangian correlation
functions and therefore by two memory-loss functions.
The first correlation relates to two field fluctuations
and finds the diffusivity as an integral operator. This
perpetuates the memory to the second correlation which
contains its own memory from the fluctuations of velocity
and distribution of wvelocities. This correlation is known
as the "wave-particle interaction" in plasmas. The com-
petition between the two memory-loss functions and the
cut-off of the memory form the essential basis for the
closure of turbulence. We find two forms of transfer

functions, for small and large scales, respectively. The
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first form belongs to the gradient transport and isolates
an eddy viscosity. The second form belongs to a collision-
less damping without gradient, énd isolates a rate coef-
ficienf of collisionless damping. The transfer function
for the large wavenumbers is applied to the derivation of
the Xolmogoroff law of turbulence with the analytical de-

termination of the numerical coefficient.

1. INTRODUCTION

The micro-dynamical state of fluid turbulence is
usually described by a hydrodynamical system, for example
the Navier-Stokes equation of motion. This equation is
nonlinear in the velocity function and is inhomogeneous
by having a driving field which may be the pressure
gradient. On the other hand, in the kinetic representation
the velocity is an independent variable and does not cause
a nonlinearity, while the driving field forms a part of
the advection and does not warrant an inhomogeneous
equation. It is known that a homogeneous equation for the
micro-dynamical state of turbulence can more explicitly
give an analytical specification of the path perturbations,
since the homogeneous equation contains a detailed differ-
ential operator of perturbations and therefore will yield

by inversion an exact evolution operator.

Unlike the kinetic theory of gases, the kinetic theory

of the spectral structure of turbulence usually requires a
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two-point distribution function, since the spectral func-
tion is the Fourier transform of the ﬁwo—point correla-
tion function of velocity fluctuations. We see that such a
procedure would involve a hierarchy in the form of the
Bogoliubov hierarchy1_7. In order to confine ourselves to
a single.kinetic equation of one-point distribution and
thus avoid the Bogoliubov hierarchy, we introduce a pro-
cedure of scaling into a mean group and groups of macro-
and micro-fluctuations, representing three processes of
transport: macro-evolution, micro-transport property, and
relaxations’g. These groups are in their increasing order
of incoherence. The relaxation process, as the most ran-
dom group, provides a memory-loss by path perturbations.
Thus the closure lies in the memory-loss that 1is neces-
sary for the transport property to reach its equilibrium,

rather than-in closing the Reynolds stresses or other

higher order transport functions.

Our first task is to derive a macro-kinetic equation,
not through the closure of the Bogoliubov hierarchy, but
by using a scaling procedure. The result is a macro-kinetic
equation with a diffusivity serving as an integral operator,
so that the memory can be extended to the distribution
function that follows. Consequently, the kinetic equation
takes the form of a mixture of the Fokker-Planck differ-
ential equation and the Boltzmann integral equation (Sec-

tion II).



The kinetic equation of one-point macro-distribution
can be transformed into a continuum representation by
means of the moment method, and subsequently, upon multi-
plication by a macro-velocity, can derive an energy egqua-
tion for the spectral balance of turbulence, bypassing
the need for the two-point distribution function. Since
the diffusivity acts as an operator, the distribution
function that follows takes a Lagrangian form, and, to-
gether with the macro-velocity, will form a Lagrangian
correlation. In this way, a transfer function is obtain-
ed, describing the mode-coupling across the spectrum,
aqd is founded on two Lagrangian correlations: one from
the field fluctuations for forming the diffusivity, and
the other from the macro-distribution for describing the
"particle-fluid" interaction. Since each Lagrangian cor-
relation presents a memory loss, the transfer function
possesses two memory-loss functions, the analysis of
which must be based on the Lagrangian-Eulerian transform-
ation. The said transformation is in the phase-space and
differs from an analogous transformationlo-12 for dif-
fusion in the configuration space (Section III). The com-
petitive interplay of the two memory-loss functions pro-
vides us with a means of closure for the derivation of
the transfer function in the form of a gradient transport
or in the form of a collisionless damping without a macro-

scopic gradient (Section IV). In this manner, we are able




to isolate an eddy viscosity and a rate of collisionless

damping (Section V).

Finally, we test the applicability of our kinetic
method to the inertia turbulence. We derive analytically

13,14

the Kolmogoroff law and its numerical coefficient

(Section VI).

II. THE SCALED KINETIC EQUATION OF TURBULENCE

The hydrodynamical equations

(at+ﬁ.v-vv2>ﬁ=ﬁ, v. (1)

~

B
1]
o
-

which describe the micro-dynamical state of turbulence,
govern the total velocity g as driven by a field E. This
field may consist of the pressure gradient, the buoyancy,
or any other fluctuating forces, including the random

noise.

By the Reynolds decomposition, we can separate the

total field

T
n
t

+ E (2a)

into a mean field <ﬁ>ss§ and a fluctuation E. In an analo-

gous way, we can decompose the field fluctuation

(0) 4 gr (2b)

A

E = E



(o)

into a macro-field E and a micrd-field E'’, with un-

equal correlation times

(o) F) ’ .
T > T, v (3)

in the increasing order of incoherence. The scaling can

be made by means of the operators
A=< a9 A, (4a)

which select the deterministic "global average", the macro-
and the micro-fluctuations, respectively. The macré—fluc—
tuation evolves in a medium possessing a transport prop-
erty that is carried by the micro-field fluctuations.
Finally, a relaxation is needed for the transport property
to approach its equilibrium. This is made possible by a
memory-loss. Thus the three transport processes of evolu-
tion, transport property, and relaxation form our main
framework for the closure of turbulence. For the sake of

convenience, we introduce an operator

A =3 +a° , - (4b)

to represent an "accumalted macro-group" of fluctuating

field

(o) (4c)

t =
"
e b
+
Q8

and path




¢ |

+ JZ,(O) . (4d)

2 =
~O

It is to be noted that the averages by A, Ao are en-
semble averages as specified by appropriate distribution
functions. The groups as scaled by A, A(?)A', only dis-
tinguish themselves by their degree of incoherence, and
therefore may overlap in their spectral distributions

with respect to frequency and wavenumber.

The deterministic functions, which result from the
global averages of the scaled fluctuating functions, inhe-

rit the same "rank" notations

()%, )Y . )

of the originating scaled fluctuating functions.

The hydrodynamical system of equations describing the
micro-dynamical state of turbulence is usually complicated
by the velocity function and the driving force which make
the equations nonlinear and inhomogeneous. In order to
avoid these difficulties, we adopt the kinetic approach.
This transforms the velocity function into an independent
variable, and incorporates the driving force into the ad-
vection in the phase space. This procedure renders the
equations homogeneous and eliminates most nonlinearities,
except the one representing the coupling between the driving
field and the distribution function in the so-called "wave-

particle" interaction. This last nonlinearity does not need
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our immediate attention. We may postpone after the closure
and solve by an equation of state relating the fluctua-
tions of field and velocity. These advantages will pro-

vide us with a simpler statistical basis of closure.

As the point of departure, we write the following macro-

kinetic equationB:
@, IRV AH
,q”z+v7+E é}f =-E") EP{E# (t T)}’ (5)

where f(t x v) and % {(t, x v) are the mean and the macro-

distributions, respectively, and
’zst-_: b/bt . V= B/ax , ? s b/b_\{ .

The eddy diffusivity is

12'——-[)03-5 (Lf(t,f/ Ukt-t) g'(t—t/>, (6a)

or, in the simplified form:

=/°Z/t <§'(t} E(t-r/> : (6b)

%

where the Lagrangian representation of the micro-field is

simply written as

U(tta)E (tx) = ETT)
- E’[t:r’f(t‘r}] . (6c)



and the Eulerian field at time t is written as
Etx) = E(t)

since x(t) =x in E'(t,x(t)) =E’(t) . The propagator, or the
~~ A ~ ~ 4

Lagrangian evolution dperator U(t,t-1) describes the evolu-

tion of the perturbed trajectory. The diffusivity may serve

the role of an integral operator if it is written as D'{}.

III. THE LAGRANGIAN-EULERIAN TRANSFORMATION IN THE PHASE SPACE.
THE LOSS AND CUTOFF OF THE MEMORY

By means of the Fourier transformation in k-space,
~
the Lagrangian correlation can be written in the following

form:

(Elbx)eft<)y= /"”P" L [k )hfk) otk e

It contains the spectral function

207 = X eI ECRD

kAt

f>- (7)

giving the mean intensity

[t = CEEEE ).

where

X = (e/x)°
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is a factor of Fourier truncation within a length interval
2X in d dimensions. The Fourier transformation has the

Fourier kernels

. _ L~ -
cJ/e'z: L/a V4

h (T2 e P, Afwhi)s T (8)

The frequency wk==wk(k”) is a function of k'’ as determined

by a certain dispersion relation, for example, reflecting

the interaction between internal gravity wave and turbu-

15-17

lence . The perturbed path E( - 1) forms a fluctuating
"o,5q_
orbit function eli f( T). Since we can decompose the path

2 into groups

DI d, A=4%%0. L-7+4

v

we find the corresponding "scaled orbit functions", or

briefly, the "orbit components":
ik dE) e b A% ., b A
R O R AT

On a separate occasion, we have developed a theory of

transition probability for the orbital motion and deter-

mined the following correlation function to be18'20:

GEt G Dy e

The first two factors on the right-hand side represent the

factorization when the fluctuating functions

10

os)
1




4 R (11)

and €

)

R A

are mutually independent, and h% is a correction factor

when the hypothesis of independence does not hold.

With the substitution of (10) into (6), we find that

the Lagrangian correlation

W) =(elx e )= [de D M(ThY) oo

la d

has, in the Fourier integral, a product of the spectral

distribution <SK k”)> with the orbit function
A 7 J© ps 7 |
M=h 4 £ AL 4L . (13a)
w Vv 3
The components may form the groups

h=hE aa M= A (130)

representing the streaming by v,u,E and the memory-loss
v AN
by the macro- and micro-fluctuations, respectively. For

the sake of convenience, we write the micro-component

,&/=AI{/€ (13c)

that incorporates the inter-dependence between the fluc-

tuating intensity s’ and the path fluctuations &’; also
2 -~

we write the accumulated macro-component as



’{\o = /Z:‘sz), (134)

The function M will be called the "memory-loss function".

In particular, if the streaming predominates, we can

degenerate (13a) into

/C["—.—.’-‘f,\/{ , with Mg},

so that the Lagrangian correlation (12) is reduced to the

Eulerian correlation by the relation:

2

W (z)

wie) = SE(ex) €kt x-4))
- / 1k’ <A(é P '/fﬂvv(-z; {gf’:} Z(—r, k ).

(14)
This is the well-known relation under the hypothesis of
"frozen turbulence", and is valid in weak turbulence. In

the general case where the turbulence is not frozen, we

have the relationship

we) = e {hte)}

between the two correlations by using Wg{} as an integral

e

operator. Note that

)< w(z)

Rrgi

since M < 1.




In the derivation of a transport property or a trans-
port function in equilibrium upon the t-integration of a
Lagrangian correlation, it is obvious that the memory
should not perpetuate indefinitely but should ultimately
be cut off, as a requirement of the closure. We see that
the memory function M consists of two components: The

(o) incorporates the strength and the de-

macro~-component h
cay of the memory. The micro-component h;, as belonging to
the most random group at the tail of the memory-chain, has

the function of cutting off the memory as the result of

the diffusion by the micro-fluctuations.

Recall that the diffusions by u- and E—fluctuations

are governed by the dynamical equations of the orbital

motions

1

A

J_v = %, (16a)

dt
and

4 - da =

Ea
respectively.

We perform the scalings and the ensemble averages by

means of the scaled probabilities of transitionls’lg.

The dynamical system (16b) gives the paths

— _ -— (o)
{(—t):-u‘c--z"-’f’fz, (‘T/=—;{-§(O)TL, (17a)

-~
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and a macro-variance
o), () 4 (o
Hle L= e %)

belonging to the unmatured diffusion, or small-time diffu-

sion.

The mi-ro-variance can be written in the form

({(-r/[ﬁt/> = 2/~<’T , (18a)

belonging to the matured diffusion, or large-time diffu-

sion with a transport coefficient

K'=[ 4o o) Ul exj ey, uow
2 Y N ~

Two forms of propagators U(t,T - 7T') may be visualized, de-
pending on the orbit evolution, whether it be perturbed by
the E-fluctuations or by the E-fluctuations, giving an ed-
dy diffusivity or an eddy viscosity, respectively. Alter-
natively, the micro-variance in the diffusion by E-fluctua-
tions following (16b) is expected to deliver an eddy vis-

- cosity too, in an indirect way through g' and after the
closure. For this reason, we shall assume a memory cut-off
and a closure by (18a). A rough evaluation of 5' could be
made by relating it to the noise spectrum of the Brownian
problem, or to the diffusion model (16a). But from a real-

istic viewpoint, K' must be related, in a self-consistent
%




way, to that same eddy viscosity which governs the mode
transfer by small scale fluctuations (Section V). We adopt

the latter viewpoint.

The variances (17b) and (18a) determine the orbit com-

ponents:

C) -0‘@) ’
’{\, = £ . /{\« = £ : (19a)

with

/= $ 8 A L)
d' = £ k"4 L d)>.

(19b)

It is to be mentioned that, unlike h'’ which depends on
the variance {&' (-1)8' (-1)> of one path & (-~ 1), the
component

7
4. = 1- ¢’ (20)
H
contains a function &’ that depends on the micro-fluctua-

tions of two paths, one is &f(-—r) and the other is

2;( - T) carrying tﬁe field intensity E" so that
slah) = TR RO e

For small 1, the two paths have still to grow, so that &’

is small. For large T, the two paths are too far apart and



lose their correlation, so that &’ tends again to zero.
It is for the intermediate t that &’ has a finite value,
so that (20) may even become negative, yielding a nega-

tive portion of the Lagrangian correlation (15).

Now we. integrate the Lagrangian correlation with res-

pect to 1, to find the diffusivity in the phase space:
o A )
[/ ’ "
=/d'c/olé'<4(/e )> Mfwk'v). (22)
0 » x ~ ~ ~

This expression can also be used as an integral operator
for integrations with respeét to t and k”. The memory-
loss function M, as forming a part of ﬁ, governs the loss
of memory for the diffusivity to approach its equilibrium.

The time integral

@ A .
fd“t: M(-T k! v) (23)
o -~ s

will be called the relaxation time.

IV. CASCADE TRANSFER WITH DOUBLE MEMORY-LOSS

We take the moment of the kinetic equation (5) to

obtain the following moment equation:

(o - © (°) (°} 2 (o )
’ } =/, (24)

L+V(u.u U U +A Y J vV w

% ¢

L

with



JL(OIEde (£ EPIZ{E f(d(t—t)} _ (25)

{o)

Upon multiplying (24) by u; and averaging, we obtain

the energy equation:
02 () ©) ) © & -
f§<§)=P+C—T—£—I’ (26)
where the transport functions are as follows:

Co )_ ( (@ (°1

production
coupling = <°j;(o}' ‘f(o))

transter  Tom - (U 7
dissipation £ = v<(7 uto/)12>

flux in energy ©)

=-4 &, @2y
transport I = 2 Vll(u'/t. ub. ) (27)

o'

The momentum equation and the energy equation are not

purely hydrodynamical, since they contain the distribution

(o) (o) (o)

function £'°) through J and T . The function J rep-
Aw

resents a collisionless interaction, and the transfer func-

(o) represents a transfer between the two portions of

tion T
the spectrum of macro- and micro-energies, respectively.

This transfer originates from the "particle-fluid" inter-



action, as shown by the new Lagrangian correlation

zny)= (Wex) o)

between the fluid velocity u ®’ and the distribution f'°)

of the "particles". Thus the transfer function is more

(28)

specifically

o @/
~_-—/dv v. 2D -39‘20(7;)(,\’} (29)

from (25), (27) and (28).

By applying the rule (12), we can transform the new

Lagrangian correlation into
, (= A ,
()0?(-7; x,V/‘-‘/Jf’ ‘f’&/(—z:k,’v} M@r, k,v/l (30a)
v~ A A~ ~ o~

with

fZO)(f v) =X @(:)(k'/ )gcoj(‘f,:"/ )Y (30b)

and get the transfer function in the form:
T = [k’ [dv 4 2 D> $ k) Mk
T ~ “: ‘;l\v ~ v ¢ (’V) -l;-v/av ' (31)

This form can be made more explicit by inserting the ex-

pression (22) for D', as follows:

~
“~




/)

°}__ 7L ’ ” @ ./ 5
T~ [Jaka @/h(f/>f04'c NATEk) ez
Here we have introduced for the sake of convenience:
NaCobR)= [dev 3 fipses) S LRl it} o
or, more briefly,
& _ AL N () o
NG = [y 3-{M@)§[M({*/VL-@/]} . e

where the dependence of M(k”), M(k') on -1,v, and of

,w;°)(k’) on v may be considered to be understood.

By expanding the multiple derivatives aj,ar, we have:

° a A {0 Ay AL, ("} ,
N = e [ite) 337 7 350
. Xi-oj(f/’é”/:’ , (34)

with

() A A ( R
X2 5 hilk) 3 A6 L)

a A A " A ﬂy
+ 3 FI(K) PAEDLI L) M) S 01e) 2

o

k)

" M(é/ }M{U%%’(k'} (35)

The second term on the right-hand side of (34) gives,

after two successive integrations by parts:
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A OpR0) SR 820

with the obvious condition
t)y ,
$lv)=0 for |l oo,
so that, after a substitution, (34) becomes
9 oy 5 2 N [ o b
VL = [ 85060 [l 3 560 33 (e
@) @/ ,
e XD s Ay DR, )

with

Fk)= [+ 00,3 (iaritg) + 3 627e) | o

As far as their real values are concerned,
(oY,, | » (o), . o (10 & (17 ;
erté/ k} 0, (f }, M(k") and M(]:) are even functions of

k" and k', so that the derivatives
A 2 A Vs
>M(k") ana 2 M(K')

will generate odd functions, and will not contribute to
the integrations with respect to k" and 5' in the infinite

domain. Therefore they can be deleted from the expression



of N;:) for the purpose of calculating T(O) from (32).

The result

6 TN s
V<4 v ey WN?%M%/*?%(W{?/M@VJ e

is in the form of the moment of wi°) as driven by the
differentials ajar of the orbit functions. Hence the trans-

fer function (32) takes the form

= [Jag s (4,67
Xéc;rﬁ;’ V. Yi(OI(é/ [ﬁ@/j%%/*%@@/ﬁfﬂﬂ (40

and is seen to be controlled by two memory-loss functions

M(k"”) and M(k') as imbedded in M(k") and M(k') .

V. EDDY VISCOSITY AND COLLISIONLESS DAMPING

It is to be noted that the v-dependent orbit functions
have their slowly varying component h} and their rapidly
varying component hv. Thus the differential 3M will be
mainly contributed by the differential 9hv of the rapidly

varying component in the manner

A

oM

~

"

A
kT M . (41)
We notice that the two orbit functions

N A .

M(‘Zk,'V) and M (- bk’ v)
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compete in their roles of loss of memory for the approach
of the transfer function (40) to equilibrium, under the

scaling conditions
O<h'¢ ke k'€ - (42)

Thus it suffices to select the function that is most ef-
fective in this role. On this basis, we shall calculate

the asymptotic expressions by considering small and large

(o)

scales. Since the path amplitudes £ ;2! and the trans-

(°),K’ are separated by k, the small

port coefficients K 3
¥ 3

and large values of k correspond to :

,e(“) 5 le' | (43a)
and

/F@)( /(’ , (43b)

respectively.
Case (a). Large k

For large k, or for even larger k", such that

"> k7 - (44)

in conjunction with (42) and (43a), we can attribute the

dominant role of memory-loss to the function
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/31(-7:'/& ~ lJﬁ,f’/é(-t,{e"/{’(a;@ “) . (45)

which is independent of v, while leaving the role of

streaming to the v-dependent orbit-function

M(-t,ff/ - »Lw(.-;,'/f') {‘v(""/ffj) . (46)

The independence of (45) on v is seen from (18) and (19),

after having assumed h% > 1 or §'=0. This approximation

is legitimate, because in the integration (40) with re-

1

3
(20) and (21) to be taken over by h’ and h° for small and

spect to T, the role of h{ in M(-1,k%v) is seen from

large 1, respectively. Hence we reduce (39) and (40) to

N«
"

Y a1t b, . c) o (47)
gl Kk k)M R e A IS

and

()
Tl

Ladits IR

= ’ .' - bR’ [dv Y ‘y kv
tnge 7S G [46 4 far x5 /t417) o
respectively. Here
Gk )= [4r T hG kI (e k) Lokt b)) 4
~ A /o) ~ ~ ~ ° ~ A

is a modulation function having a streaming by hv and a

memory-loss by hoh'.



In strong turbulence, the memory-loss predominates
over the streaming, and renders the modulation function

to become independent of v as in
G(+) =[Gz w2 h (sh) Az ) (o h?). (50
: A T T h, "Lk 5 (-T R -r,~ .
Thus we obtain an eddy viscosity
,= “ ’ /0 7 (51)
Koum [t CupGa)
and transform (4g) into

T, R [ R [y e e

farge ‘

The integrations herein involved are:
/d: v, ‘f’:f)@ Y = /;’l’ v X @f’(fﬂ f(”(/g,’gD
= x (k) wZCk ) (53a)
/Al:' X<¢f‘7@')pé7}(-é’/> = (wg’/@ x) u,(:}(f;x/> , (53b)

and

/d,f' li%", /dv v, %@}(’f/,j’):/dﬁ, 5'/%: 7{<u£°/gc')uf)(-f’/>

_Cv ¥ @\ = ™ .
_<g W Vﬂ-“’u> = va (54)



Hence, by substitution into (52), we obtain the transfer
function

) - K’ R(")
—T( &1&1 k d.J" )"0[ (55)

in the form of the product of the eddy viscosity K;r by
(o)

rj ° Here, by isolating an eddy

the vorticity function R

viscosity, we have found a cascade transfer of the gradi-

ent type.
Case (b). Small k

The small values of k imply an even smaller k’. This
extremely small k', as compared to k”, suppresses all

roles of M(- 1,k’,v) before M( - t,K,v), rendering
- v ' ~ AL

MEwkiv) 2 . (56)

Thus we transform (39) into

(o - k'/ v __2 v ) ‘Y % g ”
Nh small b ¢ % /d~ 1) M(z.,k’ f)'

(57)

The factor kgkz emphasizes large values of k” so that

we can write
M- b vz h b A 47L (58)

as an approximation. When this function is substituted



into (57) and subsequently integrated with respect to T,
following (40), the contribution from h as a streaming
is again negligible as compared to the memory-loss for

large k” in strong turbulence. It follows a modulation

function
Gh') = [dr x2 (k)
e 0
[ w2 4kl fre)Ala k)
(0] ~ ~

{1 P

(59)

for the control of the transfer function (40), yielding:

nopnn ’ v “ ’ €/ ’
Vet =S4 GEDEWI it far 0 7)o,

Smg

Here the two integrals with respect to k'’ and k” become
~ ~

separated into an energy
@)z . ©) 1
(ﬁ ) ='/4f [dz v. ¢ (é’,.vj (61a)
by (56) and (30b), and a frequency
/ ” L4 ” ’ " ”
= Jak é’”/z" @463 i) Q—(é) , (61b)

called the rate of damping in the collisionless damping

of the energy. Hence the transfer function becomes:

T

awall k - f},’(%(°)3> ' (62)
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Since the transfer of energy is not of the gradient
type, we cannot isoclate an eddy vicosity as was the case

of large k in (55).

We may consider

(‘,‘;@3{} and KJ;{} (63)

as integral operators which emphasize large and small

values of k by their respective integrations

b -
-~ 4#,,1

and write

(o) ° 9}, ’ ’ w )y
k’”a'=<'*°uz>{k’”/3"} ma MK {RE}. e

In this manner, the two transfer functions (55) and (62)

become

T - K’ ((,.5“)‘){;44’/3.’} (65)

Ivzogck_ VAt

and
T

For large and small k, the operators (63) pick up

/S;{/e;,s'} {u”‘z) : (66)

small /a=

kiki ana ALRT
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respectively, from the sum kék3-+kgk§ as appearing in

Y ’ ) : ¢ ”
3531 M(f/ and z"bfz M(f/
of the general tfansfer function (40). Thus the formula
(40) is a general transfer function with the special forms

(65) and (66).

VI. DERIVATION OF THE KOLMOGOROFF LAW FROM THE SCALED KINETIC
EQUATION

3

Although the Kolmogoroff law1 of the inertia turbu-

lence has been derived by many investigators using diverse

21 of the diagram tech-

methods as seen in a recent review
nique22 in conjunction with the direct interaction approx-
imation?3, it is for the first time that the analytical
derivation of the Kolmogoroff law and its numerical coef-
ficient is obtained from the scaled kinetic equation of

turbulence. Qur kinetic method is generally valid for in-

ertia and non-inertia turbulence.

We assume an isotropic and homogeneous turbulence,

and that the field
E=-+%v 67
~ f,./y (67)

comes from the pressure gradient Yp in an incompressible
fluid of constant density p. The shear and the buoyancy

are absent. The condition of incompressibility, as applied



to the Navier-Stokes equation (1) gives the relation

V-E = 9V:iuu (68)

-~ ~

between E and u, and therefore also between their spectral

distributions S(k) and F(k). We have

s $ED=fanSk), #Hu=[deFh), OG> [ank),
0 o °

and find the relations ' (69)

S(h) = « Flk) R(k)
D)= p* 472 Sk,

(70)

(o)

where R

= R(?)
1

i is the vorticity function, from (54), and

the numerical coefficient is determined té be 19,20

X =% . (71)

7

The details of the calculation are omitted.

In the inertia subrange, the energy balance in the

spectral form isl3’14

T(°} = g , (72)

describing a constant cascade of energy transfer across the

spectrum at the rate of energy dissipation €. Now the trans-



fer function, as found in (55), can be written in the iso-

tropic form:

1*9 = f(’?%“’, (73)

where

K= '32‘/;2&“ S G (74)

is the trace of the eddy viscosity tensor (51), and the

modulation function is given by (50), with wk==0.

From (9), (18a) and (19), we rewrite the modulation

function (50) in the form:

G(/@':K')=ﬁ-c T? M/)(_ m Y wét) : (75)

It contains the decay of the memory at a rate

N [ po? /o] F
m = [ZZ[ k(e )J (76a)

and the cut-off of the memory at a time wk_l such that

nl ’
e = kK (76b)

The integral is evaluated by an interpolation, giving a

modulation function

Cr(M'ﬁF{BP(%)] AR '/3@/;}-3. | (77)




Hence we determine the eddy viscosity by the following in-

tegral equation:

K-z fk Ak S Gk K GJ] (78)

When the spectrum S(k) is converted into the spectrum
F(k) by the relation (70), we find the solution of (73),

giving the spectra
Flk)= A &7 k_sé? with A=17
JORE Yt

Tk) =5 A7 e* R

(79)

of velocity, field and pressure fluctuations, respectively.

The details of calculations are omitted.

VII. DISCUSSION ‘»

The micro-dynamical state of turbulence can be de-
scribed by a nonlinear and stochastic hydrodynamical system
which may be homogeneous or inhomogeneous. The Navier-Stokes
system of equations is inhomogeneous, as in (1), or briefly

as



(’%+L)t_1=l;-', yA=0, witn Leiv-»72,

-

(80)

The inhomogeneous system in the physical space may be con-

verted into a homogeneous equation in the phase space , g

(\°_t+1_/ &(tx,v): o, with LE v.V—VVz.;- E‘) ;

(81)

called the "master equation". It is equivalent to the in-

homogeneous system (80), provided

A
Nt xov) = §5[v-ads)] .
Other homogeneous systems may be:

(i) the Burgers equation

(ii) the Korteweg-DeVries equation

0, +L ) w =0 with L:u,_b_. 1
<t ) ' DX +>\’ax3

(iii) the equation of geostrophic turbulence

(\°t+ L) Vxu =0, with [=uwv-yp?.

(82)

" (83a)

(83b)

(83c)




From the conceptual viewpoint, being given the micro-
dynamical state of turbulence, the question may arise as
to what treatment one should choose: the kinetic treatment
or the hydrodynamic treatment. Since a homogeneous partial
differential equation can describe the exact orbit dynamics
by the differential perturbation operator L alone, there
is an essential advantage to keep a homogeneous system,
either in the hydrodynamic representation (83) or in the
kinetic representation (81). For this reason, we have
chosen the kinetic method which, moreover, supresses all
nonlinearities caused by the velocity since the velocity
is an independent variable here. The only nonlinearity
that subsists is from E-3N in (81). This entails a Rey-
nolds stress in the phase space, the evolution of which
requires the knowledge of the Lagrangian correlation of
E-field fluctuations and a theory of transport. The ap-
proach to equilibrium.and the loss of memory constitute

the basis for the closure of turbulence.

There are two Lagrangian correlations involved: one
is the correlation of E-field fluctuations as stated above,
and the other is the correlation between the velocity fluc-
tuations and the fluctuating distribution of wvelocities.
The latter arises because our kinetic equation (5) of tur-
bulence has a long memory. Since each Lagrangian correla-
tion entails a memory, our kinetic theory of transport

finds two memory-loss functions. Their competitive roles
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and their cut-off are the main issues of our analysis.
The difficulties ére minimized by introducing a scaling
procedure which dispenses from our involvement with the
two-point distribution function. Then the scaled proba-
bilities of transition determine the scaled orbit func-
tions. The scaling permits the distinction between the
macro—- and micro-variances of path fluctuations which are
associated with the unmatured (i.e. small time) and the
matured (i.e. large time) properties of transport. Other-
wise, the unscaled variance would appear as an external

parameter.

QOur results indicate that the transfer function takes
a gradient form for small scale turbulence, isolating an
eddy viscosity, and a form of collisionless damping with-
out gradient for large scale turbulence, isolating a rate

of collisionless damping.

We can write the equation of energy (26) in the form:

3 o o o 0
y [ar Fl) = P7- BY- T7- £ (84)

o

with the transport functions: production P(O), loss B(o),

(o) () In statistical equili~

transfer T and dissipation €
brium the left-hand side is independent of k, so that,
after a differentiation with respect to k, we have the

spectral balance

B-34
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—,:(o) =_(-">/_ B,) . (85)

for scales larger than that of the inertia turbulence.
Note that ¢ ceases to be the governing parameter here.

This means that

T(°) >0 in a net production (86a)
’]."(") <O in a net loss. (86Db)

The change of signs in (86a) and (86b) refers to a direct
cascade (i.e. a cascade transfer toward large wavenumbers)
and to an inverse cascade (i.e. a cascade transfer toward
small wavenumbers), respectively. The transfer function in
the form of collisionless damping is preferred for the de-
scription of the inverse cascade. The arbitrary use of the
transfer function in the form of gradient transport would

result in a negative spectrum.
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CHAPTER C: QUARTER THREE

Group-Scaling Theory for the Enstrophy Transfer
in Two-Dimensional Turbulence

C.M. Tchen
The Graduate Center and The City College of
"The City University of New York, N.Y. 10031

ABSTRACT

Since the detailed interactions between the indi-
vidual modes contain too many minute details unneces-
sary for a statistical theory, we scale the modes into
groups which can more easily decipher the governing
transport processes and the statistical characteristics.
An equation of vorticity transport describes the micro-
dynamical state of two-dimensional, isotropic and homo-
geneous, geostrophic turbulence. By the group-scaling,
we derive the equation of evolution of the macro-vorti-
city in the form of the Fokker-Planck equation with
memory.‘ The eddy diffusivity and the enstrophy trans-
fer relax to equilibrium through the memory-loss by tur-
bulent dispersions. The memory-loss is analyzed by de-
veloping a theory of probability of retrograde transi-
tion in the scaled form. We find that the eddy dif-

fusivity contains two time scales, characteristical of
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the small-time scattering and the large-time diffusion.
In the special cases, our formula can be degenerated to
an empirical form suggested by Heisenberg when the scat-
tering prevails, and to a form derived earlier by Tchen
when the diffusion is dominant. 1In the inertia subrange,
as governed by the enstrophy cascade, the spectral law

Fu==CE:(;2/3k_3 is derived with a numerical coefficient

C=2.59.



I. INTRODUCTION

The micro-dynamical state of turbulence can be de-
scribed by the equations in the following forms:

(a) a non-conservative (or inhomogeneous) equation
in the physical space,

(b) a conservative (or homogeneous) equation in the
physical space,

(c) a conservative equation in the phase space.

The form (a) contains a stirring force, which may be
the pressure gradient, the buoyancy, or the random noise.
The Navier-Stokes equation falls under the form (a). The
two-dimensional geostrophic turbulence alsb belong to
the form (a), if the turbulence is driven by a random
vorticity source, and will fall into the form (b) if such
a source is absent. The one-dimensional Burgers equation

and the Korteweg-DeVries equation also falls into the

form (b).

It is to be noted that the non-conservative eguation
{a) in the physical space can be converted into a con-
servative equation (c) in the phase space by regarding
the stirring field as an advection. Therefore the prob-
lems of the conservative system should be the main ob-
jective of a statistical theory. With this emphasis in
mind, we develop a statistical theory, using the scaling
procedure to study the mode-couplings and the transport
property, and relying upon the memory-loss to obtain the
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closure of turbulence, A_kinetic theory1 on the basis
(c) has been developed by Tchen for the Navier-Stokes
turbulence (a). Presently, we apply the scaling method
to the two-dimensional, isotropic and homogeneous, geo-

strophic turbulence.

In view of the many applications to the meso-scale
flows in the atmosphere and the availability of numeri-

cal computationsz—7, the problem of geostrophic turbu-

lence has attracted many investigatorss-lo, see a review
by Rhinesll' The geostrophic turbulence is characterized
by an enstrophy transfer from large scales toward small
scales, yielding a spectrum of velocity fluctuations
following the k_3 law. Most theories analyzed the triad

interactions!?718,

The present theory simplifies the interactions by
séaling a fluctuation into three groups, representing the
evolution, the eddy transport and the relaxation. Our
purpose is to derive analytically the enstrophy transfer
function, the eddy transport coefficient and the spectral
distribution. Upon a generalization to a kinetic method

(c), as is equivalent to the non-conservative micro-

dynamics (a), we expect to find:

(i) the spectral law x~°/3 in a direct cascade of

energy transfer at large k,

(ii) the spectral law k_s/3 in an inverse cascade

of energy transfer at small k,
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(iii) the spectral law k~? from an enstrophy trans-
fer in a geostrophic turbulence that is driven by ran-
domly distributed vorticity sources. These results will

be reported on a separate occasion.

IT. SCALED VORTICITY EQUATION OF TURBULENCE

The two-dimensional incompressible flow in the hori-
zontal plane is governed by the following equations of

motion:
(%4—L)8&{)=0 (1a)
and

V- =0 (1b)

' >

Here u is the velocity,

= vri =(00%) (2)

is the scalar vorticity,

L=

RS>

v -y (3)

is the differential operator, and v is the kinematic vis-
cosity. By the condition (1b), the pressure gradient,
the vertical buoyancy force, and the vertical Coriolis

parameter are eliminated. The system (1) describes the

C-5



micro-dynamical state of geostrophic turbulence.

The scaling may be made by means of the operator

A=dD - wa)
of global average and the fluctuation operator

F-i-A (40)

giving the deviation from the global average. The fluc-

tuation operator

=A% A (4c)

is subsequently divided into the operator A(O) of macro-

fluctuation and the operator A’ of micro-fluctuation.

For the sake of convenience, we introduce an operator
Az A+Ao - A (4d)
giving an accumulated macro-group. Thus we have:
A

. ow=uw (5a)

~

1EH

and

Ac=¢ . <¢- §‘°’+E;’ , (5b)



The macro-fluctuation and the micro-fluctuation can in-
stantaneously overlap in their wavenumber components, but
their statistical functions are distinctly separated by a
wavenumber variable k, and by their durations of correla-
tion
T 5 (6)
c C

in the increasing degrees of incoherence.

By applying A'°) ana a’ to (1a), -we obtain the follow-

ing scaled system:

o, o (O) ’ ’
(‘bt+A()L) ;“=~[7' A o (7a)

(grL)3 = -wrghe v AWE" (75)

By a formal integration of (7b) and a substitution
into (7a), we eliminate 7' to obtain the equation of

evolution of the macro-vorticity:

@t * A(o)l_)’;@tf) = v /f{ E?C(D}} : (8)

where

~
-

K’ =/t-gc-.; <u’[f,:(/ Ut t-t) g,’ﬂ'—t}> (9)

is the eddy diffusivity, and U(t,t-1) is the propagator,
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!

or the operator of evolution along an orbit that is per-
turbed according to (3). Without altering the value of
the integral, thé upper limit may be put to infinity, by
the scale separation (6), giving a matured (i.e. large-
time) diffusivity. It is to be noted that the diffusi-
vity enters as an integral operator;s’{}.in (8), so that
this scaled vorticity equation take;‘the form of an integro-

differential equation, and not the customary Fokker-Planck

differential equation.
When we multiply the vorticity equation (8) by ;(O)

and average, we get

£3,.(67%) 4 £ 7 (T + )2
= &% 57( 75+ » GO (10)

Here we have retained the kinematic viscosity in the dif-

ferential operator L.

In a homogeneous turbulence, the second term on the

left-hand side vanishes, and the last term on the right-

hand side becomes

))<g(o) VZ-C(")) - <2"(°)) = - E;fo),with )b(o)z 37?;@. (11a)



In an analogous way, we can write

K/@(O) Yz;(o/>=_l<'<‘f(a)z) ) (11b)

and find the first term on the right-hand side of (10) to

be
_ <§ ) . ,—S,{ Z:(o?) =K ,{<‘f(°)(t) . ZJ@&._Z))},E 7;(0). {(11c)

Here the diffusivity remains to be an integral operator
with its time integration extended to the Lagrangian cor-

relation
(7“(%) -Y’%-ﬂ) : (11d)

The diffusivity is written in the form of a trace. The

(o)

function €C is the rate of molecular dissipation of the

(o)

(°)2>. The function TC

enstrophy 1<z represents the mode-

coupling and is called the "enstrophy transfer".

In terms of the dissipation function and the transfer
function, the equation of spectral balance (10) is reduced
to the form:

"'><C'(°)Z) = - T(O)— e . (12)
z 1 q 3

It represents the time decay of the mean vorticity or

enstrophy



@2y _ (R, =
+(z >=/ Ak E(), (13)
o]
which has a spectral distribution Fc(k) of g-fluctuations.

III. TRANSPORT PHENOMENA IN TURBULENCE
A. Lagrangian-Eulerian transformation in the scaled form

The Lagrangian velocity follows a trajectory that is

governed by the dynamical equation:

A
ait) (14a)
—— = «(t))
it .
or the orbit equation
q’/@(—t} A
— = - %(‘T/ / (14b)

dt

where the perturbed path

/:Q(-t/ = jf(—r}+i€(-7:) (14c)

consists of a mean path 2(-t) and a path fluctuation
£(-1). In the following calculations of the path pertur-
bations, we shall neglect the effect of the kinematic

viscosity v as compared to the larger effect from the

eddy motions.

By means of the Fourier transformation, we can write

the Lagrangian and Bulerian correlations in the following

Cc-10



forms:
%ﬁ?&); <%th)1z@ﬁf=a/@7%4¥>
= [k b =k7¢ /.L’(/e"/-c‘é 4 ('t/) (1)
and

WE(f/ = <‘f'(f',:) uwl(t, 3(-:-[/> _
et G e, T
=)k a{_r’é/éu(é/>'4('zl~é/, {(-T,f./=e ~ Tae)

respectively. Here sa(k”) is a fluctuating intensity in

the k-space, such th;t
(4‘;(/3'7)5; (‘i(‘f’/ %,(_/?/> (17a)
is the spectral function, and
” 74
A DJAGLGT) = (Wlxjutn=ef e G T
~ z ad ~ Led A é
is the mean intensity in the X-space. The coefficient

x =(=/x)%

is the factor of truncation, when the Fourier transforma-
tion is truncated within a length inhterval 2X in two

dimensions, i.e. d=2. The Fourier transformation has a



Fourier kernel
v AN ¥/a 18
14@643é = £ L s : (18)

with a frequency w =us(k”) that arises from a dispersion

k
relation, e.g. as relating to an internal gravity wave19

The integrations in (15)-(17) and in the following

are understood to extend from -« to «,.

The correlation in the integrand of (15) can be

written as

(k) < * (/"Z(_T/) = () (4,447« & Vg/l/)

- (@A sl Ty

consisting of a mutually independent part that can be

factorized as

Clurh 52 e

) <"7 &7) </9 e ~
L)) 74, e &l , (20a)

(r

(\\p

and a correction

G



accounting for the mutual dependence. We find that this
correction is not too important for the small-time scat-
tering and the large-time diffusion that are of interest
in our problem. The mutually independent part contains

an average

. qA
_ uk-,ﬂéff
Ae T 7 (21)
that is calculated by the probabilities of transition in
the scalings by A_ and A. The derivation of the proba-
bility functions and the calculations of the average are

presented in Appendix A, finding

ﬁ/’oedé':&(_vt Flak) L)l k) (22)

On the right-hand side appear the components of the orbit

functions, or "orbit components". The mean path gives the
g

component

—_ 'k", k—(ﬁ.r
’/»(—*-, 2 o e v / , (23a)

The fluctuations give the components

~

v, nw ple) ’
e k) <"”(E K @/) = axp(- w7 (24a)
/ﬂ,’(—té" = <e. Aé”.;ﬁﬁt‘é z J,x/é (— CdK"C/ ) (24b)



in the unmatured and matured dispersions, respectively,

(o)—l '—1 :
and wD » such that

4“(9)2_'___21- kr/éo: <u,@)u,(°)>}

~

of time scales m

k.’,
~ 47k F(h") (252)

>

’ /
w. = k"R K 2 7K. (25b)
The details of the calculation are given in (A20)-(A24)
of Appendix . The function Fu(k”) is the spectral dis-
tribution of velocity fluctuations, as described by (A19)

in Appendix .

If we lump the orbit components caused by the fluc-

tuations into the function
M = K% (26)

called the "memory-loss function”, we can write the Lag-

rangian-Eulerian relationship in the form:

W, () = We'{ Mk} e

This is a nonlinear integral equation for WL(T), since M
contains WL through h’, gé and (9). Note that the Euler-
ian correlation is governed by the mean path 2(-t), while

the Lagrangian correlation is governed by the mean path

Cc-14



and the path fluctuation 2(—T);

lad

B. Relaxation time

Upon substituting (27) into (9), we find the diffusi-

vity tensor and its trace in the form:
- [ D) [fo mlae)
2 0
=/d,§” (fu(/_‘,D Gk(@/ ) (28a)
K= R/;’-/df/&@(f")@(/e/
/aue" F) Gs?) o)

It is seen that the diffusivity approaches its equilibrium

in a relaxation time

G (v =/0°37 Ml b")
= [ axp(n Pz, (292)

or, approximately,
-~/
Gl = [/t ] -

The approximation is based upon the interpolation.



C. Diffusivity
The equation (28b) which determines the diffusivity

k{ is in reality an integral equation since the relaxation

time GK(k”) is also a function of K’ through w', by (25b).
As an approximation, we calculate the asymptotic

values of K’ by considering the following two special

(o) we find

cases:
7

case (i) TIf GK is controlled by m

K’ %ﬁé" [ TE s K,

= VT in two and three dimensions.
is controlled by wk, we find

(30)

with CK

case (ii) If GK

, & » P4 ” é- Vs
K-[}iédkk f;(/a/] = K

(31)

As an interpolation, we write:

, =g " v ” ” + ” ’ =1
K=4£//;’tk ﬁ&/{[%zkﬁf‘(é):lﬂk ZKQ} : (32)

It is degenerated into

)

W & m
(33)

, % >
’ ) l% w,)) 7”(0) )



IV. DOUBLE MEMORY-LOSS

The first memory-loss function M(-T,k”).appears in the
Lagrangian correlation (27) which produces the diffusivity
(32). The second memory-loss function arises from the
second Lagrangian correlation (11d); with the same dif-
fusivity in its role of an integral operator as appearing

in the transfer function (11c).

In order to derive the structure of the transfer func-
tion (11c) in isotropic turbulence, we first write the

second correlation function as

<T/i’)- f{i’—t)> = / Ak ’ (/Jy(")(faw (—T,f_e ’) (34)

in analogy with (27). Here

Calr)y = x pun) - per-k)) (352)

is the spectral intensity of y-fluctuations, such that the

ar

intensity
/ o / _ (D/ (,9/ -
jdf <4y()(f)> = (‘f &x) lx)>
can be expressed in terms of FC(k’)' by
k / 2 .
‘/45/<4)"(0)(é7>= Z/OL/\’. kl F;(tlj
(o}
= Rco} : (36a)
b3
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Use is made of (11a). Note that the relationship

i."

(k) = + £ F (k) o)

between the two spectra follows directly from the defini-

tion (2).

Now we apply the integral operator K'{ } to (34) and

write the transfer function in the following form
7;@;/('Z/fa(/c’<4f,@(ky/\4[-‘qk’)} , (37a)

according to the definition (11c), or in the alternate

form

(°) Vé o ’ " /O , .

T G D GUP Gy o
when K'{ } is written out fully by means of (28b). It is

seen that the transfer function approaches its equilibrium

at a new relaxation time
@
G;(k,é) -_—/4; M(-T, k’} M(-T,k'/ , (38)
0 ~ a4
with two memories:

M(—V'f'/ and M(—T@/ (39)



V. TRANSFER FUNCTION
By the use of (13) and (17), the transfer function

(37b) can be rewritten as:

G o koo , )
7;;;.44/; /iéé/z/aue k() G (K K) (40)

(]

where, by definition (38), the relaxation time GT(kik")
sums up the contributions from the two competing memory-

loss functions (39) under the conditions

B¢k <k (a1)
with the properties
W) « mURY) amd Q@) « W/ (42)

so that the role of memory-loss is taken over by M(-t1,k”),

i.e.

M( k) = | . (43)
Thys we can reduce (38) to

G (k") 2 G (b7, (44)

and separate the two integrations with respect to the wave-—

numbers in (40), obtaining the degenerate form



7.2 é PN AE [ L RER) e

or, more briefly,

’

—};(9{; K ’ Rg(o) (46)

in the notations (28b) and (36a).

VI. INERTIA SPECTRUM

In terms of the spectra Fu(k) and FC(k)' we can write

the spectral balance (12) in the form:

é ' 3 ’ k’ ’ ,ZF(/
?fd,/eF(é}=—<K+v)2 Ak kI k) (47)
iy, w A -

Since the differential.vanishes, i.e.
?tt:(k}=0
in statistical equilibrium, the integral form should read
(K~ zkctk’A”F(k’)—f (48)
+))) A ; _q .

where

Ev; = v<(z:;)2> | (49)

is a constant rate of dissipation of the enstrophy} A

C-20



fluctuating EC would enhance the intermittency which we

shall not consider at present.

The inertia subrange is described by the spectral

balance

K/ ka;d/k/ A/Z F;-(k,) - fg (50)
(4

by omitting the effect of molecular dissipation in the

left member of (48).

When we use the general formula (32) for’iz and ob-
serve the relationship (36b) between the two fluctuations

u and ¢z, we determine the spectra from (50). The results

Fu(k)=C£;/3fe-3, C=2.77 (51)

25, —1
F R) = 4—C é .
:( ) 2 [} k’ (52)

VII. DISCUSSIONS AND CONCLUSIONS

The problem of turbulence starté with the nonlinéar
equation aescribing the micro-dynamical state of turbu-
lence. This equation contains too many minute details
which are too complicated and also unnecessary for the
statistical theory of turbulence. Past theories either
followed the kinetic method and closed at a high order

distribution function, or the hydrodynamical method and



closed at a high order correlation. They analyzed the
detailed interactions between individual modes. The
Ipresent theory begins with the coarse;graining procedure
by distinguishing between the fluctuations of the macro-
group and the fluctuations of the micro-group. It trans-
forms the equation describing the micro-dynamical state
into a scaled equation of turbulence, in which the macro-
fluctuations evolve in a medium of more random eddies be-
longing to the micro-group. 1In this way it analyzes the
statistical couplings between groups of modes instead of
the detailed couplings between individual modes. For the
approach of the transport property to equilibrium, as a
clqsure of turbulence, the memory-loss by turbulent dis-
persions is essential. We find a scattering by the small-
time dispersion and a diffusion by the large-time disper-
sion in the process of memory-loss and for the derivation
of the eddy diffusivity. Our formula (32) of eddy dif-
fusivity can be degenerated to the Heisenberg form (30)
when the scattering prevailszo, and to the form (31) when
the diffusion is dominant. The latter form has been used
as an empirical formula in modeling the atmospheric tur-
bulence by Gisinazl; it has also been derived analytically
by Tchen?? from a cascade theory. The transfer of ens-
trophy is found to cascade down the spectrum toward the
large wavenumbers. The spectral law Fg(k)==C&:§/3k_3 for

the velocity fluctuations and the numerical coefficient
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C=2.59, as derived in (51), agrees with the results from

the triad interactions by Kraichnan%4 The nonstationarity

of £_ will cause a logarithmic factor due to the inter-

g
mittency of turbulence, and will be considered on a sep-

arate occasion.



APPENDIX.  SCALING THEORY OF TRANSITION

We distinguish between a direct transition and a
- .

retrograde transition of paths E(T) and g(-r) in the posi-
tive time T and the negative time -1, respectively. The
probabilities of transition have been investigated by
Tchen23, and were found to be governed by the Fokker-
Planck equations. The derivations were based on a pheno-
menological ground. Here we shall re-examine the retro-
grade transition by a scaling procedure and on a basis
that is consistent with the specified micro-dynamical state
0f turbulence, i.e. the orbit equation:

2 .
4"—.(7:/ == (4,(-17) , ' (a1)
dT v

see (14b).

The micro-dynamical state of the orbit can be de-

scribed by the master equation

(b‘r"' Lﬂ)%["@@) =0, .br;B/af, (A2)
upon the introduction of the §-function
Plzd) - 5[{-@(-3/] (a3)
and the differential operator

(A4)




We may consider the independent variable % to be a random
variable, so that P becomes a distribution function which
satisfies the normalization condition

jo{ﬁ P = | . (asa)

~

and gives the moment
jdﬁ £ P = /‘(i(-v). (A5b)

It is easy to verify that the moment of (A2) reproduces

the orbit equation (A1) identically.

Now we apply the scaling operators A and A’ to (A2)

and find the following coupled system of equations:

(+ AL )P = A, uir) 2 (a6a)
Y
(B-r,"'/‘\'L,t) P _ &[:c) :S%“ ' (B6b)

-

We integrate (A6b) to get

a 2F
P’ = j‘*f'%(":"r‘—“'/' ° (A7)
g 2
(@) -
and
A ulw) 2B 2 kLA (&)
e e )
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where

- [ (ete) Ylwmputeny oo

is a diffusivitX,and Uz is a propagator or evolution
operator in the retrograde transition. The propagator

Uz may be considered as the inversion of the differential
operator LR'
When we substitute (A8) into (A6a), we derive the

equation of the retrograde transition of the macro-group

F> .'b o ’ '}T>
To""vo ,_bf ,ﬂ“‘f/b/g

~

7\‘

(210)

in the form of an integro-differential equation.

In an analogous manner, we derive the equation of

transition

~pP
,S T (a11)

q&’lo)

_ P
“o

Here the governing diffusivity is

A

»
-~

K = (1-4)K (a12)

as caused by the velocity fluctuations except u’.
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We make a Fourier transformation of (A10) and (A11)

by the formulas

ex) Bmn) < [ R (=4)
-dtg-,@(—r}

= > <
(e)

i} el (313)
(2.7(:)4 P(-T,f}- A < e ) _

where « is an independent variable in the Fourier space,
Ar

and d is the number of dimensions. We get

-
th('T,'/f‘/ = ’—L'K-. u,ct) - rore: KI;_J P(=, ) (A14a)
-— [~ . - ()
-%P(‘Tff) = k- owp K P(=, ) - (A14Db)
- e = N -
The solutions are:
- 'K'-JZD- ) ,
el Bese) = < T %
IR (t)/l,, (= kv) (A15a)
Bl . T WA
=) Plr) A(-wg)x«f:<-f~wg .[Jdrﬁ )
= /[v(.‘(;;,f) uf,(. L <Lt(=)%(o)>Ik/Tz)
- Alxr) L K (A15b)

with the following components of the orbit function:
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/TL(—E/S) = 14/6 (- L'if'-th) (A16a)
(o o ©
’L)(—U,“H’)':‘ ”"/’ <’z{"{”j"<fj() f(plmrz) (A16b)

(A16cC)

1'(=k)

|
=Y
/r\
3
X
>
A
S—

Note that K{'is the diffusivity in a matured (i.e.

large-time t) dispersion, and KéO) is the diffusivity in

an unmatured (i.e. small-time 1) dispersion. 1In the

latter case the orbit belongs to a free flight, so that

X (""Ca)("",/ “{O)('M//> =X @’(o}(k'/ u@’(r/ > (217)

is locally stationary, and the trace in isotropic turbu-

lence becomes
B ey | =[x g (loren)
2 b X Gl LU [, e

the integration over a region of radius «k gives
j\dm in 2 dimensions

AL in 3 dimensions

n
t..P;I“*
(™)



Here x is the factor of Fourier truncation. In terms of

the spectral function Fu(K), such that

2wie o ) u e )) = F o in 2 dimensions (A19a)

b 12 (i»; <“’G)(f/ ‘:(o)(_f,)>:3£ E(r) in 3 dimensions (A19b)
we find

in d dimensions (A20)

R AL

In conclusion, with the use of (A20) and the introduc-

tion of the frequencies m(O) and wg, such that
)2 (o) ()> 2 3
m = LK -
30K I F (<) (A21a)
and
’ /A ’
= KK =
CUK ~ -~ IS . (A21b)

we find the orbit components to be



‘L(o}(-'t,h“) = 24([; (— wl? 1:2)

£ () = 14/5(— oy t) -

(a22a)

(A22Db)

Now the solutions (A15) can be applied to calculate

A o df-/g(-v/

-]

and, subsequently

Ta o iedee)

by the use of the formulas (A13). We obtain

- dm-/g(—r)

~imd
A e e (t} {L(‘rm )e

0

7 e “""0("} /L(tm)'ﬁ(/(‘ck')

and hence

A4 e“'f'g(’v___ Llww) £ k) e “) .

(A23a)

(a23b)

(A24)
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CHAPTER D: QUARTER FOUR

A Group-Kinetic Theory of Turbulent Collective Collision
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Centre d'Etudes Nucléaires, 92260 Fontenay-aux-Roses, France

ABSTRACT

For the describtion of the microdynamical state of turbulence, a
Liouville equation is taken that is equivalent to the basic hydrodynamical
system of equations. The equation has the advantage of being homogeneous
and contains less nonlinear terms. Our main objective is the derivation of
the kinetic equation of turbulence which has a memory in the turbulent
collision integral. We consider the basic pair-interaction, and the
interaction between a fluctuation and the organized cluster of other
fluctuations in the collection system, called the multiple interaction.

By a group-scaling procedure, a fluctuation is decomposed into three groups
to represent the three coupled transport processes of evolution, transport
coefficient, and relaxation. By exploiting the property of quasi-stationarity
at the different levels of degradation of coherence of the groups, we

develop a transport theory with the closure by the memory-loss. The kinetic
equation of the scaled singlet distribution is capable of investigating

the spectrum of turbulence without the need of the knowledge of the pair
distribution.

The exact propagator describes the detailed trajectory in the phase
space, and is fundamental to the Lagrangian-Eulerian transformation. We
calculate the propagator and its scaled groups by means of a probability of
retrograde transition. Thus our derivation of the kinetic equation of the
distribution involves a parallel development of the kinetic equations of

the propagator and the transition probability. In this way, we can avoid the



assumptions of independence and normality.

Our result shows that the multiple interaction contributes to a
shielding ana an enhancement of the collision in weak turbulence and strong
turbulence, respectively. The weak turbulence is dominated by the wave

resonance, and the strong turbulence is dominated by the diffusion.



I. INTRODUCTION
The microdynamical state of turbulence can be described by the equation

of evolution of the distribution function f(t,g,v) in the form:

(1a)

(’Qt t ZL’}iB = O, éf:z %/éi‘ :

The differential operator
(1b)

/\ A\
[ = vV +E&E: b , Q= %ygv
contains a fluctuating self-consistent field ﬁ(t,x) which perturbs

the ballistic orbit that is represented by Qt4—vlv in the phase space

and velocity v .
A
E is the

of position x
Lad ‘o
In plasma turbulence, (la) is called the Vlasov equation, when

[

electrostatic field multiplied by the ratio of electric charge to mass.
~
The equation can also be used to treat the fluid turbulence, when E

represents the pressure-gradient or other additional hydrodynamical forces.

We decompose the.total distribution function

(2)

= T + £

Fh)

into an average distribution
(3a)

F5‘<f>’

by means of the averaging operator A, and a fluctuation
(3b)



The difference between K and <’ > lies in that the operator A,
like any other operators, applies to all the functions which may follow,
while < > is an ensemble average of the function or functions limite@'
by the angular brackets.

Thus by applying A to (la), i.e. by premultiplying (la) by A,

we obtain the equation of evolution of f , as follows:

(,+L)f=C )
The collective collision
T=-KI1f, (5)
can be written in the form
E=<Z>{E} . | (6)
The collision operator
(4% = a-<]>>-~9 7

has a diffusivity <qi> which may serve as an operator to keep a memory.
On the other hand, by applying A to (1a), we obtain the equation of

evolution of £ . This equation may take the following alternative forms:

(2, YADE =-1F (82)
(’?it+—i.)f/=—AIj_f-+a/ (8b)
(%+b¥=ﬁE:a, (8c)

where C is defined by (5), and

€ = -ALEf = -TLf-TC . (9)




e s

|

Our problem of the statistical theory of turbulence is to find the
kinetic equation (4), with the turbulent collision (5) to be derived on the
basis of one of the three equations (8a) - (8c) of fluctuations. The three

equations differ by their governing differentials

D+ AL 2 +L > 4L, 10
t+AL, ), % (10)

so that their integrations will have different evolution operators, as follows:

-~

A, U},He_ , U . (11)

1-3

The operator /\  was introduced by Weinstock, is the free

Ufree
flight or ballistic propagator, describing a trajectory that is not
perturbed by the § - field fluctuations, and G is the exact
propagator.

The differential equation (8a) has the simplest source, but its
operator 21 is ccmplicate. On the other hand, the integration of the
differential equation (8b) can be achieved by the simplest propagator
Ufree of free flight, but the source is complicated by the nonlinear

s
fluctuation C , as this will generate a hierarchy and requires a

4 .
closure. In the following we choose (8c), because the average source C
Ns N ~
is easier than the random source C , and the propagator U is simpler

A
than the operator /\ , and 1s governed by the well determined equation

of the exact trajectory in the form:

[bt_ +/I:(t)] ?J(t,t') = 0 , (12a)
or
[?¥,+ L(t')] u(t,t') = 0 . (12b)



~ -

The fluctuating sourcg ~L £ gives a pair collision:5
T -@E) (132)
that 1s of the diffusive type with an operator
(A = ° @5} ' % (13b)

related to the diffusivity <1E)> . The two diffusivities are defined by:

%

t A
<B>=/dz <E(t,.x>A (t,t-TIE(e-T)) (14a)
z 0 - 7 ~
- t
<ID>=/dT, <’E:(t,x) (e, t-THE(E-T )> . (L4b)
= 0 v~ v

Different levels of approximations have been made in the literature
on the theories of turbulence in fluids and plasmas. As the lowest
order, the quasi-linear theory assumed a propagator of free flight Ufree

and obtained a resonance denominator & - k-v, where & and k are the

frequency and the wavenumber of a wave

o~ @ - kNT (15)

interacting with the particle of velocity v. This resonance was
fundamental to the Landau damping in the quasilinear theory. The next
order approximation assumed an expansion around U in the renmormalization
theory. Interesting advances in theory of turbulence have made use of

3

this assumption.
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With the group scaling, the derivation of.the spectrum of turbulence
~can be made on the basis of the kinetic equation of the singlet distributiom
without the pair distribution.8 We represent the three transport processes.
of evolution; transport coefficient, and relaxation, by three scaled

8roups and analyse their interactions. The closure 1s obtained by the loss
of memory in the processes and by exploiting thé property of equasi-
stationarity in the degrading coherence of groups.

The paper is organized as follows. After a comparison between the
hydrodynamical and the kinetic descriptions of the microdynamical state
of turbulence (Sec. II), we introduce a group-scaling procedure for
representing the three transport processes by the three groups (Sec. III).
We find that the kinetic equation of the macro-distribution has a turbulent
collision integral with a memory. We investigate the pair interaction and
the multiple interaction between a micro-fluctuation and the cluster of
other micro-fluctuations that form a macro-group. Various forms of memory may
develop:

(i) First, the memory._appears in the collision that is controlled by
the diffusivity acting as an integral operator. Then, since the collective
collision includes the pair collision and the multiple collision in the
form of an integral equation, a memory ensues.

(ii) The Lagrangian representation of a function is made by means of
a propagator that is governed.by a kinetic equation with a memory.

Obviously, the memory group (i) which deals with the evolution of
the distribution function at the time instant ¢t has a longer duration than.

the memory group (ii) which deals with the evolution of the propagator



for the éhorter-time-interval t-t' . We shall neglect the memory of the
group (ii), by justifyiﬁé from the property of quasi—stationarity

between the groups (Sec. IV). We shall show that the propagator is related;
to the probability of retrograde transition, and develop two parallel
kinetic theories on the basis of the detailed dynamics of the trajectory
(Sec. V). Finally, the collective collision is investigated, by means of a
closure based upon thé memory-loss (Sec. VI). A memory function appears and
is controlled by the resonance function in weak turbulence and by the
diffusion in strong turbulence, yielding two opposite outcomes: a

shielded collision in weak turbulence, and an enhanced collision in

strong turbulence (Sec. VII).

II. MICRODYNAMICAL STATE OF TURBULENCE ,

The microdynamical state of turbulence can be described in two ways.

First we can use the Navier-Stokes equations for the incompressible fluid:

<3t+ L}-V~VV"‘)€L = é (16a)

y-oo = O (16b)

Here U is the fluid velocity, v 1is the kinematic viscosity, and

Vo (17)

A
E = -~

is the pressure gradient, and may even include other forces, such as

buoyancy and random sources.



Alternatively, we can consider the microkinetic equation (la),

rewritten in the form of the Liouville equation:

[(4+1®] Eexw = 0. (18)

. ~
The evolution of the exact distribution function £(t,x,v) 1is controlled by

the gifferential oOPerator

;m>

1) = ‘Z:Y'VV}* 00D (19)

-~

The microkinetic equation has been used as a basis of deriving the
A
BBGK equations by writing £(t,x,v) in the form of a summation of
$ - functions for N particles in the phase space.8 Presently, in
~

order to secure the equivalence of the two descriptions, we write f

in the form of a single § —function:
f(t,x,v) = 5[§ - u(t,x)] . (20)

The density in the incompressible fluid is taken as unity here without
loss of generality. The compressible fluid should have the density
f(t,§) as a factor before the & ~function.
By taking the moments, it can be demonstrated that the
microkinetic description is transformed into the fluid description as
represented by the Navier-Stokes equations.
By the condition of incompressibility, we can write ‘E' in the following

-

two forms:

E ; c Lftx) Gt
E = 475 fat W M( )‘A( K) V Ax (20)



E =-

e R UL PR

hd v

One is nonlinear and the other is linear, so that the differential

operator becomes

L = é{')@v} 4 (22a)

with

2
o -
}X~x:/"(\f'y) : (22b)

LY

g o= - L v-aj/dxe/v
A B

4

The Navier-Stokes equations (16) and the Liouville equation (18)
may be called the primitive equations in the physical and phase spaces,
respectively.

The kinetic.approach has several advantages. First, it transforms
the inhomogeneous Navier-Stokes equation into the homogeneous equation
(18) and rendered all nonlinear terms, as arising from the velocity

~
function wu(t,x), into linear ones with the independent variable , as
v 05

v
in (18) and (21). The only nonlinear term kept is connected with E in
(18) for describing the mode-couplings. Itlcan ultimately be treated by
the linear equation of state (21).
Secondly, the kinetic approach treats both the wave-wave interaction and
the wave-particle interaction. The latter is the mechanism of the linear

and nonlinear Landau dampings or amplifications. This interaction is not

explicit in the hydrodynamical approach.




Finally, should one propose a general kinetic theory that combines both
the molecular motion and the turbulent motion, the microkinetic equation (18)
can again serve as a basis, provided % includes both motioms above, without
a predetermined viscosity. Our kinetic theory that is based upon (18) with
a differential operator (19) is concerned with the turbulent motion in a
viscous fluid medium. However, for the invéstigation of the turbulent collisions
by eddies of size larger than the viscous cutoff, the effect of ¥ can be

neglected.

III. GROUP-SCALING PROCEDURE

The decomposition of a fluctuating function Into an average and a
fluctuation is the usual practice in statistical methods. We denote the global

average and the fluctuation by

— ~/ —
A and A=1-4A , (23)
respectively.
Not all scales of fluctuations perform the same role in the three
procesées mentioned earlier: evolution, transport coefficient, and relaxation.
For describing these processes and their couplings analytically, we

represent them by three scales, using the three operators

A(O), Al , A" , (24a)

to form the three groups, or scaled fluctuations:

A - [
E°=A°E , E'=A'"E , E'"=A"E .  (24b)

-~ -

They fluctuate and have their durations of correlation
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(-] ’ /2

T. 7 T > T O (25)

in the increasing degrees of incoherence. This is the property of
degradation of group coherence, instituting a quasi-stationrity of one
group with respect to the other. The fields (24b) will also be called
macro-, micro- and submicro-fields, respectively.

The two-scale averaging procedure is obtained by further scaling ;T
into

A=A +4A (26)

by using A(O) to find

A° A =0, A°A° =A°, &

Subsequently, the three-scale averaging procedure is obtained by another

scaling of A' into

(1

A' = A + A", (27)

(1)

and using A to find

ADF 20, a0 oo, ADRD L@ W0 g

The averaging procedures of many scales may be denoted by

A _=< > ,AOE< >o ,.Al=<)l , (28a)

where A is the operator of the global average, AO and A1 are the

operators of the accumulated averages:

A =K+ A , A1=K+A°+A(l) . (28b)




=3

Although the groups A° and A' may overlap in thelr wavenumbers
instantaneously, their statistical functions, e.g. their spectral contents

must lie in adjacent domains of wavenumbers, i.e.

0,k) , (k,°) . , (29)

We conclude that the group-scaling procedure is a scaling into the
three transport processes mentioned above. It can distinguish between the
two diffusivities: the asymptotic diffusivity (?') and the non-asymptotic
diffusivity<rpo> , a distinction not present in the one-scale averaging
procedure.

Recall that the spectral function, being the.Fourier transform of the
correlation function of velocities at two points, would, in the one-scale
averaging, require a pair distribution function and its coupling with the
singlet distribution function. In the present procedure of group-scaling,

the singlet distribution function £° suffices. Indeed, £° gives u® and

<ku°)2> , and thus derives the spectrum of u- fluctuations by a differentiation

with respect to k .
The degradation of group coherence (25) indicates a consecutive
quasi-stationarity among the groups, and is an important property for

classifying the interactions and placing the memory and the memory-loss.
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1V. TURBULENT COLLISIONS AND MEMORIES

A. Collision in the Kinetic Equation of £,

By scaling the Liouville equation (18) by means of Aé and A' , we get

the equations of evolution of the macro-distribution
(v +A L)L =C (30)

and the micro-distribution in the form:
-~ ! ’
(()t_I_L_)f :—Lﬁ—c; p (31a)

or, equivalently,

(o v A7)t =-LF (31b)
Here
C,6=-4a L' (32)

is the collective collision. The scheme falls into the framework that was
described by (8c¢c) and (8a).

The differential equation (31la) can be integrated to give

t A
£ _.A"/clt’ Ul t) L) £(t)
—A'/L:/t’ Ut) C)
(9]

(33)




The lower limit of integration is set to zero, and the initial value is

ignored, since
A L'(t) £'(0) =0 . (34)

Here and in the following, the dependence on x or (x,v) - is understood.

The propagator
t
G(t,t') = exp[ - [ de" i(t")]
!
satisfies the differential equations (12).

It is to be remarked that the differential equation (3la) for the
evolution of f' has two sources written in the right hand side: The micro-
source —L'f0 represents a coupling between the micro-operator L' and
the macro-distribution fo and gives a fluctuating contribution to the
solution, as seen from the first term in the.righg hand side of (33). The
macro-source C0 represents the collisional cluster in the medium in which f0
evolues, Although C0 is quasi-stationary, it can give a random contribution
through the operation A'G as seen from the second term in the right hand
side. This term represents the effect of the quasi-stationary C0 riding on
tlie random trajectory.

In order to determine the collective collision, as defined by (32), we

multiply (33) by L'(t) and average, obtaining:

t ~
¢ () = Ag[dt' L'(t) U(t,t") L'(e') £_(t")

0



t
+ AO/dt' L'(t) U'(t,t") Co(t') . (36)
' 0

This expression consists of the pair collision

t
¢%(r) = A /dt' L'(e) UCe,t") L'(e") £ (t") (37
0

and the multiple collision in the form:

t t
1 ' ' 1 ' = ' ' '
Al /dt L'(t) u'(t,t") Co(t ) A /dt Ho(t,t ) Co(t )
0 0
= - Ao Ho * Co . (38
Here Ho can be identified as the collective collision in the kinetic
equation of Uo’ i.e.
' = - ' 1 ' = 1
()t + Lo(t)] U_(t,t") A, L'(8) U'(e,t') = H (£,t") 5 (39)
as obtained upon scaling (12a) by Ao. Note that (12b) will not lead to
the desired collision and is therefore not relevant here.
As an option to (8a), we have the equation of evolution of the
micro~-distribution in.the form
- | I |
<%+A L) £ L', (40)
and obtain
t Pal
f! = - A / de'/l (e,e") L'(t") £.(e") (41)



by an integration and the use of the operator /\ . It follows:

C = - A L'
(o]
t -~
= A f de' L)AL (r,eY) L'(eY) £ (")
0

= AL o {fo}. , (42)

’
Here Aozﬁ denotes the collision operator

rd t "
AN = A de' L'(t) A(e,t") L'(t")
0
= D'Ao D'. d R (43)
with a diffusivity
t A
AD' = A / dt' E'(t) A (t,t") E'(t") . (44)
o (<] ~ ~
v 0

) A
By replacing /\ by U in (42) - (44), we obtain the pailr collision

C = aa {fo}. , (45)
with a collision operator

4

t
8,48 = A / dt' L'(e) UCe,t') L'(t")
0

> A Do , | (46)

~
>

0



and a diffusivity
t
AD = a dt' E'(t) U(t,t') E'(t") (47)
o] o - ? ~ : .
v 0
By collecting the results (36) - (38), we obtain the following

relation between the two collisions C0 and (; in the form:

c, = 0:0 - A H %C_ (48)
with
t
- 1 1 v
A H »C_ Ao f dt Ho(t,t ) Co(t ) (49)
0

B. Collision in the Kinetic Equation of Uo

A N
The distribution function £ and the propagator U have their evolutions
of some resemblance. By repeating the calculations that have been made 1n

Subsec. IVA, we obtain the collisions

H

o AOA"{ U, } (50a)

H, =44 {Uo } (50b)
of Uo’ as related by the formula:
HO = H o " Ho-x- H o ° . (51)

Here HO and 1 o are the collective collision and the pair collision
in the equation of evolution of U0 , i.e. (39). The results (50a), (50b),

and (51) are analogous to (42), (45) and (48), respectively.




C. Memories

We summarise the results obtained above as follows:

(1) Primary memory in C,

The kinetic equation of fo-, in the form (30) and with the collision
(42), carries a primary memory by the coilision operator AOA¥;, which can

be written into two groups as follows:
qofb =@}« AT} -

,10
The second group forms a correlation /LQﬁ)-{ﬁ } on its own, but does
not have sufficient time to approach its equilibrium, by (25), and therefore

will not contribute to a diffusive collision. Hence we can write

Aafl 2D ALY (520)

as an approximation, reducing (42) - (49) into:

G =Dt} C=<a){L} (53a)

- (U, H =&y U (53b)

] X

= QZO - F’ * C; (53¢c)

* [H ' (534)

7

I

-7 -

Il

with
@y = 2D 2, Laly=2<D)?

(54)

£
o)l 2 A YD, ) o/t €@ UL ET)
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Hence the evolution

o + A LIE (5,7) =<A,)5fo(t')}

= ]E/-c <L'(t) A(tt—r)L?f—U/>ﬁo(t-Ti} , (55)
0

with t-t' =T , carries a primary memory in C, from the fluctuations E'

/
of scale I; , such that

t > ”CC/ > T, (56)

by (25).

(ii) Secondary memory in H

On the other hand, if we write U(t,t') = U(T) , with t-t' =T,

the kinetic equation

(3 +A L ) Ulte) = Httt)
:<A'> {E)o'(t-—tﬂ}
Z/tdf' <L//t//A\(T,T-T’)/—//t—T’/> Uo(r—t’) (57)

has a collision integral governed by the collision operator

T , "
[ L‘/'CKIL/(‘E)/\(‘EIT-T:)L/(L“—T’/>

= /ﬁh;’@”/ﬁ/i(t, -T°) Z_(’/(T-Tj/\/
Q
; foto’fl\/l‘”(t} A(t,r-t’} L (r—T?}

decomposed into two parts. With the condition of quasi-stationarity

D-20




T > T > T (58)

as a continuation of (56) from (25), the second Integral has a matured
diffusivity, where we can put T-?c and obtain <C£QCC9Q%>, while the
first integral has an unmatured diffusivity. Since TT%K T , the secondary
memory carried by the collision integral Ho in the short time épan T

can be assumed negligible as compared with the primary memory.
D. Resolution of the Integral Equations

From the definition
0 ot COT [ 4f
H(w) = Jn:/d—c YT HT), (59)
o)
the Fourier transform of the convolution ﬁ'*-co is
<o ) T —
% [de O g ) (et
o 0
@ _cwT” T~ .
:%/C/"c”/?r’e e /L//T/Co(f/,
o o
and is written as
H*C = nH)C(w). 60)

Here a change of variables T'c T-T” has been made. The symbol = denotes

a Fourier transformation. Hence we transform (53c¢) into:

Glw) =Clw) ~ Ef_f/w/Q(w) (61)



V. KINETIC EQUATION OF THE TRANSITION PROBABILITY
A. Path Dynamics

The trajectory with which the propagator evolues is described by

the following differential equation of the path dynamics:

Za ’
j_i(_t_/_ _ _é‘(t’/ )

(62)
dt-/l
or, identically, by the system
dx(t/ b)) dot’) 2,
gt o Tt/ -
with the conditions
X(t) =x,  wWe) =v , (64)

which specify that at the instant of time t , 'the said trajectory
passes by the phase point (x,V).
By dintegrating (63) and writing t' = t -T , we find the dynamical

variables

Rie) = x + dt) Y- v VT -

-

and the displacements
E(—t} /4/7: v(t-t’)
= ——\/t‘/“/dl, (z- t/E/f T/

}A/(:c} =-/ 41:’5(75:5'). (66b)

0

(66a)




Now the path dynamics (63) that is driven by E has the displacements:

ii_(fﬁ -~ Ut-T)
dt -

v(i‘ t}
dr

(673)

E(t T) . (67b)

B. Betrograde Transition Probability

The Lagrangian correspondent of an Eulerian function G(t,x) can

be written in the form
G [t—T,, x+ /e(—'c) [t,x] , with7>»0 , (68a)

and specifies the value of the function as observed by a fluid particle
coming from the point Q(t -T ) at the time ¢t-T , along the
trajectory which at the time t passes the point x . The Lagrangilan

function can be written more conveniently as

I?(t,t—'E ) G(t-T) (68b)

by means of the propagator G(t,t—t ) . It is in reality a function

of two states:
P
t -T, x +,£(-I‘) and t, X . (69)

Since Q(—TZ) is a random function, we can introduce a retrograde transition
- . .

probability, written in the form:
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f’\?(t»Lj -x+ﬁ |t,§) ) (70a)

or, briefly in the notation

pled) (700>

The first form expresses the state t,é as a condition and can be called
a conditional probability. The second form implies a quasi-stationary
transition, i.e. % varies more rapidly with -ﬂ;g than with t’f .
Here,g is an independent variable.

The concept of the retrograde transition probability has been introduced
earlier and its equation of evolution was found to be of the Fokker-Planck
type.9 More recently, by the use of this transition probability, the
kinetic equation of tﬁrbulence was found.lO In the present Section,
we shall devote to the relation between the retrograde transition probability
and the propagator.

As the basis of the dynamics of }%:t;éy, we write the equation of

the detailed evolution in the form

(2 « o) Bd) = o

BT

satisfying the condition of normalization:

fom //5(-1::4/ =/ . _ (71b)




!

The differential operator is

A

g A >
4(7&‘—1:) = —\:(f-t/';— ' (72)

In order for (71b) to describe the microdynamical state of the turbulent

trajectory, we put

]3(%%/ = g[{ - {2('75/] - (73)

The partial differential equation (7la) has its characteristical
equations coinciding with (67). Evidently, by substituting (73) and
integrating (7la) with respect to .e , we will reproduce the basic

dynamical equations (67).

The Fourier transforms of (7la) and (71b) are:

[;——_C + z(t—t,f’/)]/;(—t//f) = 0 (743)

and
A -d
p(tk=0) =(2r) ", (74b)
with .
L-th)= - k- (tc) (750
and

fT4r'»5(t-t,’é) = - ng-@(—t/. (75b)
0 .

Here d=3 in the three dimensional space. The integration of (74a)

with the condition (74b) gives the solution

w)
l
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~d A
(1) s [ o £28)]
- S e b dT)
Gyt e EYE Pl (76

It consists of a ballistic orbit fumction e—iE-yI? and a field-dependent

'fo(-r, k)

orbit function, which is

:P(-v:,/f,) = xp i{i'/:[('t),

(76b)

if E = 0.

C. Relation Between the Propagator and the Transition Probability

The evolution of U is governed by a kinetic equation with a
collision H . It is to be noted that ﬁ(t,t') , being an evolution
operator, or propagator, describes the exact trajectory, and therefore
is a functional of the path /é(‘t/ during the interval of time from t
to t-T in the retrogradeée transition. Hence the propagator can be written

as:

fee,en) = ?Jf?(-r)] , (77a)

or

(e, t") =/ o dy st Ay, e =T, (77b)

by the use of the transition probability J%(—t ,2 ) . 1In an analogous manner,

we have:

Utt) = / a T) peek) (770)



A St e e

In this way, the propagator is determined by the probability of transition

’I\)(_tsﬂ) ’ Or. —F.'("Tng) .

D. Lagrangian-Eulerian Transformation

The Lagrangian function depends on two states, and can be written in
three forms, by means of a functional as in (68a), a propagator as in

(68b), and now a transition probability in the form:

U(t,t=T) e(e-T ) =fd() Sy ez, i dy . (782)

It admits a Fourier form:

UCt, t-T ) o(t-T )= (2m)¢ PC-T,0 66T k), (78b)

by a Fourier transformation with respect to l, . A time integration

eVl

yields the convolution:

~ t .
U %G =fdtU(t,t—'C) G(t-T) . (79a)
0

Hence the combined Fourier transformations with respect to both t and

2 yield :

Us G = (Zvr)_o{vu ﬁ(-wé) Glw, k) - (79b)

e G '?'EU‘;T ﬂé(w‘/f'.")tﬁ(_t,f)] CT(w,/E) : (79¢)
o



Use of (76b) has been made.
We conclude that the transition probability helps in determining
the propagator and the function to be operated upon, and thereby establishes

the Lagrangian-Eulerian transformation.

E. Kinetic Equation

By scaling (71a) by KX and A , we find the system:

e+ dewl]f(54) = J=4)

i

(% + f(t—u/}]}(—ﬁg/ -Z(l"t}/—’(‘?{/ - j('l: ?) (80Db)

with the collision
j('?;@/ E‘@(f-t/ﬁ(-uf/) : (80c).

The procedure of determining the collision 3(-1:,,@) is the same
as that yielded the collision H in the kinetic equation of U . We
deduce

T=] - HAT, (81)

analytically, as was with (53¢) and (53d). We have

Jwd) = vLRe)-v p=d) (822)




(82b)

Iwt) = vl pesl/

with
(82¢)

Ky=/ gz Jfe) Almee) Vpzv)d
c3 0 -
(824d)

<P§ /47: <V[—t} U('c -T- Z‘/V(‘C—T/)

Now by neglecting the secondary memory, we can write the approximations:

" T =7 (83a)

?

1

H
(Rew P} = GReod)
U and T will be

In the following, the determination of U
, SO that we will have no more opportunity

(83b)

performed through p and P

of dealing with the kinetic equation (57) of the propagator.

VI. DETERMINATION OF THE COLLISIONS BY MEANS OF THE TRANSITION PROBABILITY
of the Lagrangilan

The result (79¢) has transformed the convolution U+ G

form into its Fourier Eulerian correspondent. We shall apply this result

to transform the convolution H x Co’ rewritten as
I\ —
L8)Txc, .,

by definition (53a). We obtain:



G = 2@ [4r ORI ph) Cot)
< e M(ak) Cloh)

= o(((.o,'é,) Q(w,é) , (84)

where

o (k) TR M(w /i) (85a)

is a dimensionless factor of memory, and

2 es) (,.(w-lle‘V}'C__
Mhk) =~ k%2 /c/t 3 " P(m k) (85b)
- 0 s

1/3

is called the 'ﬁemory function", defining a life-time M for the
memory.

Rigorously speaking, <££> = %'CP;>'E) operates on the ballistic
orbit function (15), as well as on all the diffusivities which are
embedded in U and Co . With the approximation that <§}) varies
slowly with v , as is true in strong turbulence, we can evaluate (85b)
and get

00 {w-h.
M(‘\’/é} ~ / de T+ 2 {L(u /‘?V)_C};(—‘C, )(’,), (862)
b -

where, by definition (76b), we have




i

Blok) = (o ibllm)
- i <R Rt

- ()" Blwt)

Now it leaves us the function 5(—If,k) , and we shall determine it

(86b)

by means of the Fourier transform of the kinetic equation of transition

in the form

D R T
s PCTR] = Tk N
from (80a). The collision is given by the expression

JI(zk) =- AZ<E(C/> ;;[‘17/%} , (88)

as governed by the diffusivity (82c). The integration with the condition

(74b) gives the probability

BT = @) exp [ - sztdr’@(r’))] (89a)
0

which we substitute into (86b) to obtain
_ T
P(-T,k) = exp [—sz d'c’<K(1: ))] (89b)
- 0

Since <K> is caused by the field fluctuatiomns

t e

= E° + E' and gt = @y pr

~ - - -~



we can decompose the diffusivity into components, as follows:

(k) =& + &k, &= G k). (90)

Within the available time span T and under the quasi-stationarity
condition (58), the diffusivity <K'(t900;> reaches a matured development,

leaving the non-asymptotic diffusivities of the order of magnitude:

<K(l)('r:)> < <K°(t )>
The negligible <?(1)(t‘£> may be included under <kk1:l> for brevity.
The procedures indicated are to calculate the two diffusivities from
the path dynamics (66b), to substitute the results into (89b), and
subsequently into (8m ) and (8% ), to obtain P, x andM . The calculations
are lengthy, but can be simplified if we choose the highest power in T

for retaining the most rapid memory-loss. The results are collected

as follows:

(a) results relating to <D">

H* C,

=]

= (k) Clak)

133 _ 3,0t

Plcth) = f:% L

/

(91)

0(((4),/%/ = € %'3/\4[(4),;?) , Ca(:n:/c’

((w-bv)r -witm et

(k) =”/4~cr2e LS AN

SR e (R ) e
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with




(b) results relating to <]Dt>

H¥C =-x(wk) Clot)
o&(Qq,kulsz C, u%;'3[v1(Lbé:)

(92)
L[CJ"‘/BV)Z‘ — ,‘;?-CJ_‘)”“’L-C"L
M(w k) L"/—a:?'r Tt e e “b
with 0 V
’ ’ ’ 3
gy = (D87
By applying these results, we transform (53b) and (53c) into:
Cv(w/&) = Q:;(‘*),é) + K(w/é/ C,:(w,é) (93}

Hlok) - H’[w,é) + &, k) Fi/w,};c) - | (94a)

The last equation can be used to derive

(k) = (X(w,/i) + [x(co,f,)]z _ (94b)

- VII. SHIELDING AND ENHANCEMENT OF THE COLLISION

With the approximation of neglecting the secondary memory, as stated

in (83), we can reduce (93) into the form
Clokh) = Clok) + (wh) Clok)

rewritten as

C:,(w/h,) = ﬁ(w,é) fo(w,lg} ) .' | (95a)



by introducing the coefficient

plokla [~ b))
- [(1-o0)+ x], (95b)

whereﬁﬁtﬁzare the real and imaginary parts of
/

X = 94, + L OKZ . (95¢)

The result (95a) shows that the collective collision depends on the
factor {3 , which in its turn depends on the memory function Aﬂ . This
function has a complicate integral (92). We shall calculate it
approximately by means of an interpolation which correctly covers the
three regions as dominated by Q), ’ m° , and aJ- EiY;’ separately.

For the sake of simplification of writing, we introduce the following

frequencies:

RS

Vobo' fefe . Y-te . Oofopy]

(96a)

with the ratios

E=n/)://pm ‘ 7=§;D/§, , (96b)

n

and the numerical coefficients found to be:

,@M=[6/F(£)]3'" ’€-=éj—, %f(zcw/é.- (96c)

»




Finally we find the results, as follows:

2
J [— 23
o(l—_— d

-1

: =2 7°(+3% |
(I-3¢2)"+ % (1+3¢ ) | (97)

8, = ;304’
We estimate that :7 is of the order of unity, and E is an index of the
strength of turbulence. The asymptbtic cases reduce the general formula
into the following:

(a) For weak turbulence, we have i » [ , entailing (X//«OK&, we

find

IR

~ 3
x, = (%,/1) (982)

so that

"

|
(i)

&

(98b)

causing a shielded collision.

(b) For strong turbulence, we have kS <</ , entailing (X}_(( & , We

/
find
A 3 ’@w’ 3
z (Y [ 5
&, <11>/§>m) [ﬂ ) ]< / (992)
;pé%p * i ™
so that

pz(i-w)"

(99b)

causing an enhanced collision.



The enhanced collision by the factor /3 can be evaluated for
plasma turbulence and fluid turbulence. As an illustration, we consider
the plasma turbulence in a strong magnetic field. Here the electric field
fluctuation excites the velocity fluctuation. We found that both spectra
possess the k—3 power law, that ﬁé; is a constant quantity, and that
the Larmor radius is a spectral cutoff. Since the'g—fluctuation drops
rapidly, the macro-electric energy (k§°)?> will cover the main body of the
energy-containing portion of the spectrum to become approximately

independent of k . These parameters determine a turbulent Reynolds number
- 042 1/2 /
Re = <(f P Tk “J{>2 . (100)
By definition (96a), we have
A £
=1 2 2 ‘= /
EC,//%L /1 R; <'1%/OQ;) . A fé; é%) ‘

obtaining

(41t ST

P
and
,. 3 L +1°3
Bz iea /) [1eari bk )E] (1010
For high intensity turbulence , R  is large, and we reduce (101a)

into: __3/2 -3/;

pE 1+ g [ (/%//éc) , (101b)
with




i

C/; = z('ép/‘f’m)‘? '

The collective collision is increased above the pair collision by

an amount proportional to k‘3/2

. This means that the big eddies in a bath
of smaller ones will be more apt to have an enhanced collective collision.
An analogous increase of the effective diffusivity of a suspension of small

particles in Brownian movements is well known. The application to fluid

turbulence will be given at a latexr opportunity.

VIII. SUMMARY AND DISCUSSIONS

The point of departure of the statistical theory of turbulence is the
description of the microdynamical state of turbulence, either by a system of
hydrodynamical equations in the t,xi space, e.g. the Navier-Stokes
equations (16), or by a consistent microkinetic equation in the t,xi,vi space,
e.g. the Liouville equation in the form (18). Here by enlarging the
dimensionality from the passage of the t,xi space to the t,xi,vi space, we
have eliminated the nonlinearity as connected with the velocity field,
but have kept the nonlinearity as connected with the Ei—field from (21).

If the Navier-Stokes equations are further decomposed into Fourier series,
the multi-dimensional variable gx , with & = (i,k) , has the three
directions 1=1,2,3 and all the Fourier.modes k running fronl-ﬁo to® ,

The distribution
£(t,v, ) =§ [v“ - u‘((t)] | (102)

transforms the Navier-Stokes equation into a corresponding Liouville



equation of the form:

(bt + L)f = 0, ' (103)

where

== 2, ) -i-ZbA (104)
x X <y "‘ﬂy

/J)’

In this kinetic representation, the enlarged dimensionality by the

is the differential operator, and: ) are the coefficients.
Fourler transform renders L deterministic, so that the Liouville
equation becomes linear. Since the linear equation does not distinguish
between the average and the fluctuations, it does not lend to clearly
express the coupling between the modes in a functional form. An external
fluctuation response assumption becomes necessary for establishing the
physical and functional structure of L . For example, when L and £

are decomposed into two components as
= @, 0L, f=(f)_+°%f, (105)
(103) can be transformed into
[+ W,] ®, = -(sL 58y . (106)

An iteration along the direct interaction approximation was to assume a

dissipative (L)o of the Fokker-Planck form.

By contrast, the nonlinear Liouville quation (la) retains the mode~couplings

which are described by the equations of evolution (8a)-(8c). The form

(8a) gives the collision in the most direct manner but requires the knowledge

D-38




~

A
of the operator jﬁ whose physical structure and relation to U can only
be obfained through other two equations, (8b) or (8c). In the form (8b), the
memory disappears in the ballistic orbit and reappears as a high order

correlation

<'f.(t) Ufree(t,t—_f) f:(t-T:) ;(t—t)> , (107)

causing a hierarchy. Therefore we have chosen the form (8c) which does not
present this difficulty. On the contrary it establishes the necessary
relation between)K and G, thanks to the tramsition probability.

For the sake of simplification of discussion and abbreviation, we

use the one-scale average by writing:

£(t,x,v) = (1), £(e,x,v) = £ (108a)

and
L(e,x,v £(t,x,v) = £19) £ , (108b)

with
fany =g{¥}, (108c)

from (22b). The time derivatives along the trajectories will be written as:

d =D +1L . (108d)

The average distribution and propagator, and their fluctuatioms,

are governed by the following equations of evolution:

E't () = c(L) (109a)



ﬁt £(1) = - £(1') Q1) - c(L) (109b)
and

Etﬁ(l) = H(1) (110a)

'&tﬁ'(l) = - F@") T - HQ), (110b)

with the collisions:

cy =-Cian T (111a)

H(L)

-<’f(1') 'ﬁ(l)> ) (111b)

The evolution of f£f(1) 1is governed by a variable source coupling
f and T and a deterministic source -C which represents the cluster of

fluctuations in the diffusive medium. Upon integrating (109b), we get
~ A '~ - -
fw = -%0w [fan f +cw] (112)

and subsequently upon multiplying by %kl') and averaging. we find

the collision, as follows:

T -<F(1') P\ 'f‘?ﬂ)} () + <§'(1') ﬁ')* ) (113a)
or - — —

T =C - " xc . . (113b)
Here

- )T}

(]



‘is the pair collision, having an operator

o A a~ N ~
(XY = B B £y L (115)
and -H *—C_ is the convolution of two collisions:

T :(Z){E} and B =@ T . (116)

In terms of the collision operétor
(5 > = <'E(1') AA % f(l')> , (117)

we can rewrite (113b) as

T -{Z){‘f_} -G T *(Z){f'} : (118)

We conclude that the variable source and the deterministic sources in (109b) -

yield a collective collision with two components: one is proportional to
<4 > » and the other is proportional to <A> , as related to the

pair collision and multiple collision, respectively. The latter contributes

to a shielding of the collision in a weak turbulence as governed by

the resonance of the wave exp [—1(«) - E-v)t] , 0r to an enhancement

of the collision in a strong turbulence as governed by the diffusion

(o]

parameters of relaxation frequencies %; and m~ in the memory function.

Such opposite effects can find their analogies in the Balescu-Lenard equations

in quiescent p1asmasl3’-l4

and in the effective diffusivity of a syspension of
particles undergoing Brownian movements,15 respectively. More recently,

a reversal of the effect of multipe collision in Brownian motion has

also been found, dependent on the relative scales of the particles and

the Brownian motion.16-l8



We can give the following interpretation., A cluster of large size' a may
move with a high velocity and be scattered by the small scale turbulence,
i.e. ka > 1. Since a part of the eddies will be displaced'or shielded from
participation in the collection interaction, the effective diffusivity
is reduced. On the other hand, if ka<: 1, the cluster will participate
together with the background eddies to contribute an enhanced collision.

By the generalization to the two-scale averages, we obtain the kinetic
equation of the distribution function f0 with the collective collision
'Co, as found in (30) and (48). This can derive the transfer function for
the energy-cascade and determine the gpectrum of turbulence without the

intermediary of the pair distribution function <:f(l') E(l):} .10
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